
www.manaraa.com

U N I V E R S I T Y O F O S L O

FACULTY OF SOCIAL SCIENCES TIK

Centre for technology,

http://www.ti

innovation and culture
P.O. BOX 1108 Blindern

N-0317 OSLO
Norway
k.uio.no

The European Inter-University
Association on Society, Science and

http://www.esst.uio.no

The ESST MA

Christian V. Lundestad
University of Oslo / Universiteit Maastricht

Word Count: 24.740

ESST

Technology

Pleasure and Pain:
Drift and Vulnerability in Software Systems

Technological Culture
2003

http://www.tik.uio.no/

www.manaraa.com

www.manaraa.com

Synopsis

Modern, Western post-industrial societies and our complex technological systems are subject
to risks unparalleled in the history of mankind. These risks expose vulnerabilities in our
technologies, our societies and our personal selves, as we become immersed in technologies
without which our cultures cannot function. The proliferation of information and
communication technologies (ICTs) into all aspects of life poses unique risks for all of us.

At the heart of ICTs lies the software which gives the computer its purpose. The aim of this
thesis is to investigate how social and organizational factors influence the vulnerability of
software systems and their users. The site where software is produced is studied through
interviews among software developers. An interdisciplinary approach is employed; using
theories of risk and vulnerability of complex technological systems, as well as theories from
organizational sociology and software engineering. Scott A. Snook’s theory of practical drift
is used as the basis for further analysis.

Four areas are identified where social factors compel software developers to drift away from a
global set of rules constituting software development processes and methods. Issues of
pleasure and control, difference in mental models, undue production pressures, and
fragmentation of responsibility all contribute to an uncoupling from established practices
designed to guarantee the reliability of software.

The implications of these factors in terms of vulnerabilities of software systems, its users, and
ultimately of our societies are discussed. Directions for future research are identified, and a
hope for the future is expressed, where software will be produced that instead of avoiding
risks, tries to anticipate them.

Keywords: risk, vulnerability, software vulnerability, practical drift, information society

Christian V. Lundestad
(christian@lundestad.com)
Oslo, October 6, 2003

The ESST M.A.
Specialization: Technological Culture
1st semester university: University of Oslo
2nd semester university: Universiteit Maastricht
Supervisor: Dr Anique Hommels, Universiteit

Maastricht

mailto:christian@lundestad.com

www.manaraa.com

www.manaraa.com

Preface

Pleasure in the job puts perfection in the work.
-Aristotle

The title of this thesis hints at the emotions experienced by software developers during the
course of a development project. They find immense pleasure in manipulating the most
complex technological artefact known to mankind, creating complex structures and edifices
from intangible materials, using not much more than the power of their minds. Their pleasure
is only matched by the pain felt when things do not go as envisioned; when the software does
not do what it is supposed to; or when the product of their labour does not meet with user
approval.

For me, the process of writing this thesis has been exclusively a pleasurable experience, and I
sincerely hope that Aristotle’s maxim will hold true for the end product. For someone
originally trained as a computer scientist and software engineer, it has been most rewarding to
learn to see science and technology in a new light, and be able to do fieldwork among old
colleagues.

I would like to thank the people at Telenor Mobile and FIRM who took time out from their
busy schedules to be interviewed, especially Rodin Lie and Peter Myklebust who did most of
the work recruiting other interviewees and acted as my “gate openers.” I am particularly
grateful to my supervisor, Dr Anique Hommels , for her invaluable assistance and insightful
comments at the various stages of the work with this thesis. My fellow ESST students in Oslo
and Maastricht also deserve many thanks for their friendship and inspiring discussions both
on- and off-topic; especially my Maastricht flatmates Jo Anders Heir, Stian Slotterøy Johnsen,
and Zeynep Bağcı.

www.manaraa.com

Table of Contents

PREFACE...I

1 VULNERABLE SOFTWARE – VULNERABLE LIVES ... 1

1.1 INTRODUCTION ... 1

1.2 THE ROLE OF SOCIAL FACTORS IN SOFTWARE VULNERABILITY... 3

1.3 STUDYING SOCIAL ASPECTS OF SOFTWARE DEVELOPMENT AND USE .. 5

1.4 BRIDGING SOCIAL THINKING AND SOFTWARE PRACTICE ... 10

1.5 METHOD ... 11

1.6 STRUCTURE OF THE THESIS... 16

2 THE RISKY INFORMATION SOCIETY.. 19

2.1 INTRODUCTION: THE RISK SOCIETY ... 19

2.2 VULNERABILITY OF THE INFORMATION SOCIETY ... 23

2.3 NORMAL ACCIDENTS VS. HIGH RELIABILITY.. 27

2.4 PRACTICAL DRIFT... 31

3 SOFTWARE DEVELOPMENT: PLEASURE OR PAIN?... 39

3.1 INTRODUCTION ... 39

3.2 TWO COMPANIES – TWO CONTEXTS... 39

3.2.1 Telenor Mobile .. 40

3.2.2 FIRM ... 42

3.2.3 Contexts for Software Development .. 43

3.3 PRACTICAL DRIFT IN SOFTWARE DEVELOPMENT ORGANIZATIONS .. 45

3.4 SOFTWARE METHODS AND PROCESSES... 46

3.5 PLEASURES IN TECHNOLOGY .. 50

3.6 MENTAL MODELS... 54

3.7 PRODUCTION PRESSURES.. 61

3.8 FRAGMENTATION OF RESPONSIBILITY .. 64

3.9 THE RESULTS OF PRACTICAL DRIFT ... 66

www.manaraa.com

4 CONCLUSION: LIVING WITH VULNERABILITY .. 71

4.1 SUMMARY .. 71

4.2 IMPLICATIONS... 76

4.3 DIRECTIONS FOR FUTURE RESEARCH ... 78

4.4 ANTICIPATING VULNERABILITY ... 82

APPENDIX A: LIST OF INTERVIEWEES ... 85

TELENOR MOBILE ... 85

FIRM.. 85

REFERENCES.. 87

www.manaraa.com

www.manaraa.com

 1

1 Vulnerable Software – Vulnerable Lives

1.1 Introduction

It is seven in the morning on Monday, October 26, 1992.1 At the London Ambulance Service

(LAS), the brand new, custom-built Computer Aided Despatch (CAD) system goes live. The

control room is filled with excitement, but also apprehension. LAS is the world’s largest

ambulance service, and the staff are about to start using a computer system that is more

advanced and complex than any ambulance service has ever had before. The CAD system is

supposed to aid emergence despatch operators by automating many of the tasks associated

with taking emergency calls from the public and despatching ambulances to the correct

location. With the old system they had to take down details of an emergency on a piece of

paper and put this note on a conveyor belt that would take it on to further processing. The new

system has advanced features such as a computerised map system with public call box

identification, vehicle location tracking, automatic update of resource availability, automatic

identification of duplicate calls, and automatic ambulance mobilization in simple cases.

Compared to the manual system they have been using until now, the CAD system represents a

quantum leap into the future.

 As the London morning rush gets underway it becomes clear that things are going

terribly wrong. Some emergency calls appear to get “lost” in the system so no ambulance is

sent to people in critical condition. The delays cause distressed people to call the emergency

number again and again. This increase in the number of calls causes waiting times of up to 30

minutes before emergency calls can be dealt with. Other parts of the system fail too. The

computerised map system refuses to recognize certain roads, forcing the operators to use

1 The following narrative is based on Flowers, 1996, chap. 4, except where otherwise referenced.

www.manaraa.com

2

maps and telephones to give directions to ambulance drivers. The automatic allocation of

ambulances to accident sites forces emergency crews further and further away from their

home bases and into unfamiliar parts of the city, adding further to the delays and confusion.

Even more distress calls are generated when ambulances fail to turn up at accident sites,

arrive late, or turn up two at a time.

 In the confusion, ambulance crews, who have received little training in the new

system, fail to operate it in its intended manner, leading the CAD system to base its directives

on incorrect information. The crews in turn become increasingly frustrated with the CAD

system, ignoring its orders, causing even more confusion, frustration, and delays, which

further compound the problems in a deadly vicious circle. Within 36 hours of operation, the

system has to be shut down, and the operators are forced to use a hybrid solution, allocating

ambulances manually. One week later, the whole system locks up altogether, and LAS has to

revert back to the fully manual paper-based system.

A later inquiry report (Page et al., 1993) concluded that “the computer system itself did

not fail in a technical sense. Response times did on occasion become unacceptable, but overall

the system did what it had been designed to do. However, much of the design had fatal flaws

that would, and did, cumulatively lead to all symptoms of systems failure” (para. 1007x).

Although no deaths have been directly linked to this incident (para. 6090-6091), it is clear that

the introduction of the CAD system constituted an unacceptable risk to the inhabitants of

London, jeopardizing their lives and health. The spectacular failure of the CAD system

illustrates three kinds of vulnerabilities: the vulnerability of our personal selves, the

vulnerability of our modern societies and the vulnerability of our computer systems. These

vulnerabilities are the focus of this thesis.

www.manaraa.com

 3

1.2 The Role of Social Factors in Software Vulnerability

I have chosen the LAS case as the starting point of this thesis since it provides a poignant

example of how computers in general and software in particular can affect our lives and our

well-being. It is also a good and well-documented example of how it is not always the

technical aspects of technologies that constitute the largest risk, but that social and

organizational factors must be taken into account when attempting to understand the

technologies we surround ourselves with, the risks they pose for us, and the vulnerabilities

they expose both in us and themselves. In this context, I take vulnerability to mean the ability

of people or systems to survive and continue to function when subjected to unwanted events.

This notion of vulnerability is further elaborated in section 2.2.

 Dealing with information systems and information networks has become part of daily

life in our modern technological cultures. Our economies are fuelled by the exchange of

information. International financial markets and the global news media are just a few

examples of activities that would be severely affected by only minor disruptions in the

services provided by the global information systems we have built. These information

systems are made up of interconnected computers. In the last decade, the Internet has grown

from being a tool for scholars and researchers communicating mainly via e-mail, to a global

marketplace and an indispensable source of information. Businesses rely on the Internet for

communication with their customers and partners and for financial transactions; private

citizens use it for news, e-commerce, public information and keeping in touch with friends

and family. We all rely on the continuing operation of the payroll systems of our employers;

the reservation systems of airlines and railway companies; and the tax systems of our

governments. In short, the Internet and other complex information systems are becoming part

of the technological infrastructure that is enmeshed with our culture. It is therefore important

www.manaraa.com

4

to understand the vulnerabilities of complex computer systems and come to terms with issues

related to security, privacy and reliability.

Information systems are vulnerable in the sense that they are subject to hardware failure

(e.g. disk crashes, power failures, component malfunctions), software failure (“bugs”, logical

errors, etc.), unauthorised access, deliberate attempts to disrupt operation (“cracker” attacks,

software viruses, denial of service attacks), etc. Issues of privacy and confidentiality are

aspects that become increasingly important as individuals, businesses, and governments use

computer systems for storing and communicating information. In addition, computer systems

may not be adequately able to handle unforeseen events or accommodate changes in the

system’s environment. These aspects will be discussed in detail later in this thesis.

The goal of my research has been to investigate some of the social and organizational

factors that contribute to the vulnerability of computer systems. I have looked specifically at

the development of complex software systems by software professionals and how social

issues relating to their backgrounds, their values and ideals, their interaction with managers

and clients, and their work settings can impact the vulnerability of the software they produce.

By using theories of risk and vulnerability of complex socio-technical systems to investigate

how social factors can lead to a deterioration of such systems, I hop to shed new light on

important issues that so far have been overlooked when analysing the vulnerabilities of

computer systems. Particular emphasis has been placed on Snook’s (2000) theory of practical

drift, especially the notion that local, pragmatic action within an organization can have

detrimental and potentially catastrophic effects for the organization as a whole. Applying this

theory to organizations constructing computer software and identifying factors that can

contribute to this drift has been the main objective of this thesis. My research question can be

summed up as: How do social and organizational factors during design and development of

software influence the vulnerability of software systems and their users?

www.manaraa.com

 5

 We will return to the London Ambulance Service case at the end of this thesis. Before

that we will examine what characterizes software as a technological artefact and look at issues

of risk and vulnerability surrounding the development and use of software. We will then meet

some software professionals at two companies that have to deal with these issues on a daily

basis. Hopefully, we will emerge at the end with new insights into some of the factors that

contribute to the vulnerability of software systems and thereby the vulnerability of our

modern cultures that have come to rely so heavily on these technologies.

1.3 Studying Social Aspects of Software Development and Use

By emphasising the social aspects of the design and production of technology, I place myself

firmly in the tradition of researchers within the field of science, technology, and society (STS)

studies. Rejecting a naïve technological determinism viewing technological innovation as

external to society, STS scholars investigate how social factors influence the development of

technologies, as well as the construction of meaning surrounding these artefacts. While still

acknowledging that science and technology can bring about changes in society and social life,

they point out that existing human relationships, established meaning formations, everyday

practices, interactions, and social structures shape technological changes. By opening up the

“black box” of technology, i.e. looking at the content of technology and how it is shaped in an

interaction with society and culture, STS researchers hope to gain a deeper understanding of

our technological cultures and broaden the technology policy agenda.2 Researchers studying

the social construction of technology emphasize the malleability of technologies, giving

individuals and relevant social groups an interpretative flexibility in determining the social

and cultural meanings of technological artefacts (Bijker, 1995).

2 See Williams & Edge, 1996, for an excellent overview of the field. Although they prefer to call the
field “social shaping of technology” (SST), I feel that the term STS is more in line with contemporary
usage.

www.manaraa.com

6

 An interdisciplinary approach is the hallmark of STS studies. By drawing on research

from philosophy, sociology, economy, and innovation studies, STS researchers use a diverse

set of theories and methods in the study of science and technology, asking what is unique

about science and technology in culture (Bowden, 1995, p. 77). Most STS scholars have

concentrated on traditional, physical artefacts like bridges, domestic appliances, and rifles

(Mackenzie & Wajcman, 1995); or bicycles and light bulbs (Bijker, 1995). The subject matter

of this thesis is computer systems, or more specifically, software. In the following I will

discuss what characterizes software and touch briefly on some of the STS theories that are

relevant in understanding the social and cultural issues surrounding the development and use

of software.

Computer systems are commonly viewed in terms of hardware and software. The

hardware is the physical artefacts involved, with the digital computer and its silicon-based

integrated circuits containing millions of transistors per square centimetre at its heart,

providing a universal calculating engine. In some sense, the digital computer is the ultimate

malleable artefact, having the ability to be changed to provide any functionality that involves

the storage, manipulation and calculation of any data that can be represented in numerical

(digital) form. Software is what makes this possible; providing the reconfiguration of the

computer and the algorithmic programs that harness its generic properties into a specific

application. The production of software is therefore interesting from an STS perspective,

since software is constantly shaping and reshaping the computer, inventing and reinventing its

social meaning, and reconfiguring human interactions around it. The massive interconnection

of computers into global information networks that has taken place in the last decade is

impressive in terms of the hardware involved, but equally so for the innovations in software

which lie behind it, enabling computers to “talk” and in doing so opening new social world

for us human beings.

www.manaraa.com

 7

The advanced technological artefacts surrounding us are also increasingly relying on

software for their operation. Almost everything from our washing machines to our television

sets and our automobiles depend on computers and the software that makes them “run”. The

fact that software is ubiquitous underlines the importance of investigating its characteristics

and implications for our societies.

The phrase commonly used to describe modern, networked computer technologies is

information and communication technologies (ICTs). ICTs have attracted increased interest

from researchers of many fields as the application of these technologies has become

commonplace both at home and at work. The increased ubiquity of ICTs in modern societies

has had profound consequences and reshaped social and organizational activity, especially in

the workplace. Previous STS-related research has uncovered the processes that shaped

computers and information networks during the cold war (e.g. Abbate, 1999; Ceruzzi, 1999;

Edwards, 1995; Edwards, 1996), stressing the point that the structures and configurations of

current ICTs are the result of social and economic processes. When it comes to the social

shaping of software, Williams and Edge (1996, pp. 882-884) group the research into three

major strands: the organizational sociology of software, the “social constructivist” analysis of

software, and studies of the commodification of software.

The organizational sociology of software has focused on studying the production and

use of software, using theories and tools from industrial and organizational sociology.

Researchers within this field have studied the division of labour and expertise during

development of software, as well as the way gender and class relationships are changed or

maintained through the application of computer systems in the workplace (e.g. Green et al.,

1993), and how conflicts over control of ICTs emerge (e.g. Murray & Knights, 1990).

 Social constructivist scholars have advocated the study of the scientific laboratory in

order to investigate the construction of meaning in science and technology (Latour &

www.manaraa.com

8

Woolgar, 1979/1986). The software development process can also be viewed as a kind of

laboratory, and it has consequently proven to be an attractive site for researchers within this

field. MacKenzie (1993) has criticized the attempt to use formal mathematical methods to

improve the reliability of software on the grounds that mathematical “proofs” are not absolute

and open for controversy. Low and Woolgar (1993) have studied how the classifications of

certain issues within a software development project as technical “is a thoroughly social

accomplishment” (p. 54). The efforts to create “artificial intelligence” or “knowledge-based

systems” have also attracted attention from philosophers and sociologists of knowledge, who

criticize computer scientists naïve hopes of replicating competent, socialized human action in

a machine (e.g. Collins, 1995). Sally Wyatt (1998) has investigated the introduction of

computer networks in government administration in the U.K. and the U.S., criticizing the

technological determinism inherent in the belief that the mere establishment of a technical

infrastructure would cause changes in work practices and social interactions.

Studies of the commodification of software have investigated how software has moved

from bespoke applications tailored for a specific use to standardized “shrink-wrapped”

packages. A case in point is the near monopoly of Microsoft’s Office package, which

dominates the market in business and home “productivity” applications such as word

processing and electronic spreadsheets. The dynamics behind the stabilization and

commodification of such applications have been investigated with a view to the economic and

organizational implications of these developments (e.g. Brady et al., 1992).

Theories and methods from the social sciences have in the past decade attracted interest

from researchers within software engineering and related fields. Unlike pure computer

science theory, which usually only deals with technical issues intrinsic to the formal world of

algorithms, data structures, and programming languages, researchers within software

engineering deal with processes and methods for organizing software work and

www.manaraa.com

 9

communicating with future and existing users of software. Other software-related fields with

a strong social element include human-computer interaction (HCI) and computer-supported

cooperative work (CSCW). Scholars within these fields have turned to the social sciences in

an attempt to find methods and tools that can help them improve their understanding of the

social issues involved in software development, especially issues surrounding understanding

the work done in the social settings in which the software is to be deployed and eliciting

requirements from customers, users and other stakeholders in the software development

process.3 The emphasis in these fields is usually not on investigating and understanding

current software development practices as might be the case in a more traditional social

science approach. It is rather about prescribing changes to existing practices in an attempt to

intervene and improve them (Rönkkö & Lindeberg, 2000). Ethnography and other methods

from social science then run the risk of being just another tool in the software developers’

toolbox, subordinate to the perhaps overly positivist mode of thinking within this profession.

Floyd et al. (1992) provide a pioneering attempt to investigate the epistemological and

philosophical foundations underlying software development. By bringing together scholars

from philosophy, social science, informatics, and mathematics they seek to investigate

computer scientists’ and software engineers’ notions of truth and proofs, their use of

metaphors, and their view of their own reality and that of their users. By doing so, they are

able to shed new light on old problems within the field of software development. Dittrich et

al. (2002) is the most recent contribution of this interdisciplinary research into the conflation

of social thinking and software practice. Their goal is to “promote the discourse about the

interrelationship of social science-based approaches that shed light on the social aspects of

software practice” (Klischewski et al., 2002, p. ix), by deconstructing software practice and

related research, questioning established paradigms, analysing how social aspects of software

3 See Quintas (1993) for a collection of articles on the subject.

www.manaraa.com

10

use are conceptualized, promoting a broader understanding of the software development

process, adapting social thinking for improving software development methods, relating

software practice to organizational change, and reorienting software practice by focusing on

use-oriented design (pp. x-xi). This interdisciplinary approach and pioneering research has

provided important inspiration for this thesis.

1.4 Bridging Social Thinking and Software Practice

The groundbreaking studies of the social processes surrounding the production and use of

technological artefacts proved to be a breakthrough in understanding how technological

artefacts are shaped by social activities, and how the social activities themselves are shaped

by these artefacts. As we saw above, computers and software have been a ripe arena for STS

research. This has been important research, expanding our knowledge about the role of

computers and software in society. It has made us aware of the fact that ICTs can be used for

different purposes, some more appealing in the eyes of different groups than others. Bringing

different stakeholders and interest groups together to influence the development of ICTs can

only be to the benefit of all involved.

 A more limited amount of research has gone into studying the software developers and

their social world. This is perhaps due to the difficulty of doing fieldwork among software

developers, who mostly sit at a computer programming, typing in what is aptly named “code”.

The intricacies of software development are usually poorly understood by non-professionals,

making ethnographic studies of software professionals a frustrating task for social scientists;

Low and Woolgar (1993) found the “technical talk” among software developers who were the

target of their ethnographic fieldwork to be of “complete unintelligibility” (p.50). Within their

field, software engineering researchers have embraced theories and methods from social

science in order to improve their processes and to better understand the users, thus improving

www.manaraa.com

 11

the software they produce. Except for some pioneering, interdisciplinary minded scholars,

however, they have generally not sought to use these tools in an attempt to investigate the

epistemological and philosophical foundations of their own field.

This “gap” between software engineering researchers trained in engineering and natural

sciences, and philosophers and social science researchers has meant that the positivist

assumptions behind much software engineering theory and methods have gone relatively

unchallenged. This makes the construction of software a ripe arena for STS researchers, who

with their interdisciplinary approach should be able to bring new insights to the field. This is

what I hope to accomplish with this thesis. I intend to draw from the STS field a constructivist

approach to understanding the design and production of technological artefacts. In addition, I

will draw important ideas and inspiration from some of the more STS-minded studies of

software professionals. Theories from organizational sociology on risk and accidents

combined with recent research on software development will provide the analytical

framework. Drawing empirical data from two case studies and using my personal knowledge

and experience from the software engineering field, I hope to contribute new insights into

how social factors influence how software is built and used, and how this affects the

vulnerability of both the software and those who use it.

1.5 Method

Due to the scope of this thesis and the time and resource constraints involved, it was

necessary to limit the original research question to something manageable, finding a path of

inquiry that was feasible and that seemed likely to yield interesting results. By using some of

the most influential theories of risk and vulnerabilities of complex technical systems (Perrow,

1999/1984; Snook, 2000) as a theoretical foundation, it was possible to limit the scope of the

original research question and formulate issues for further empirical work.

www.manaraa.com

12

The main empirical basis for this thesis is a series of twelve interviews with software

professionals in two companies. All the interviewees are directly involved with the

development of software, either as developers (programmers), software architects, or

managers. The main goal of these interviews was to identify social factors in everyday

software development work that could have an impact on the quality and thus the

vulnerability of the software developed by the interviewees. The interviews took the form of

semi-structured qualitative interviews, lasting approximately one hour each.

When determining which companies to contact in order to obtain interviewees, I

approached personal acquaintances in the IT industry that were placed in such a way within

their organization that they could act as “gate openers”. By getting these key people interested

and involved in my thesis, they could put me in touch with individuals within their

organizations who would be sympathetic to my research and who would have the authority to

allocate the time and resources needed to conduct the interviews. This is in accordance with

Stake’s criteria for case selection, “selecting a case of some typicality, but leaning towards

those cases that seem to offer opportunity to learn” (1994, p. 243, original emphasis), and to

select “that case from which we feel we can learn the most” (ibid.).

The two companies ultimately selected as interview sites also provided intriguing

contrasts. Telenor Mobile is the largest mobile telecommunications operator in Norway. It has

1600 employees working with every aspect of mobile telecommunications. Software

development is just one among a wide variety of activities. The software developers

interviewed work in a section within the software development department responsible for the

development and maintenance of “middleware” software – a highly technical domain without

“end-users” in the traditional sense. The other company, FIRM, is a small entrepreneurial

upstart with only 40 employees in Norway. The development of their Internet-based market-

www.manaraa.com

 13

research software product is their main activity. They produce highly visible software with a

wide range of non-technical users. The two companies are further described in section 3.2.

My empirical research can be considered to be what Stake (1994) calls an

“instrumental case study, [where] a particular case is examined in order to provide insight

into an issue or refinement of theory. The case is of secondary interest; it plays a supportive

role, facilitating our understanding of something else” (p. 237, original emphasis). The focus

was therefore not on the specific conditions at Telenor Mobile and FIRM, but on what I could

learn about software developers and their attitudes towards risks and vulnerabilities, and the

social and organizational factors that influence their work. My goal was to solicit “insider

accounts” from these developers. According to Hammersley and Atkinson, accounts are

important “for what they may be able to tell us about those who produced them. We can use

what people say as evidence about their perspectives” (1995, p.125).

Scholars have argued that interviews in the classical research tradition presuppose a

particular epistemological position, assuming the existence of a social world “that is

independent of the language used to describe it” (Seale, 1998, p. 202). The opposite position

would be an idealist one “in which interview data – or indeed any account of the social world

– are seen as presenting but one of many possible worlds” (p. 203). When analyzing the

interview material, it was important to read the software developers accounts not as

describing any objective social reality, but as their subjective perception of their world. Since

no other groups at Telenor Mobile and FIRM were interviewed, no definitive claims can be

made about the social configurations within these two companies. Nevertheless, since the

present research investigates the attitudes of software developers and the social factors

influencing them and their work, I believe the interview data constitute a valid basis for

further analysis. Seale distinguishes between treating the interview as a topic, investigating

how language is used in the interviews; or as a resource, gathering data about the external

www.manaraa.com

14

world from interviewees’ accounts (p. 204). Although the emphasis in my research is more on

the actual accounts of the software developers, important data can be gleaned by investigating

the language employed by the interviewees and their linguistic repertoires, for instance when

talking about their pleasures in programming. In this sense, the interview material is treated as

both topic and resource.

At Telenor Mobile, developers were asked to volunteer as interviewees. At FIRM,

interviewees were selected by my “gatekeeper”, the director of development. At both sites,

the interviewees constituted a significant portion of the total number of developers,

diminishing the potential for bias. Given the nature of the research, I believe that the selection

of interviewees did not have significant impact on the data that was acquired through the

interviews. The majority of the people interviewed at Telenor Mobile and FIRM were

software developers and software architects who routinely do programming as part of their

normal work. In addition, at Telenor Mobile the section manager directly in charge of the

developers was interviewed; at FIRM both the director of development and the quality

assurance (QA) manager were interviewed. A complete list of the interviewees can be found

in Appendix A.

 The interviewees were relatively homogeneous when it comes to age and

education; they were all aged from the late twenties to the mid thirties, having Master-level

educations from one of the four Norwegian universities. This is a common background for

Norwegian software developers. In addition, all the interviewees were male, a fact that sadly

reflects the current state of affairs in the Norwegian IT industry. In 1996, only 8 % of first

year students at the computer science and communications technology studies at the

www.manaraa.com

 15

Norwegian University of Science and Technology4 were female (Women in Computing, n.d.,

para. 1-2). With only 50 % of the female students completing the 4.5 years Master program,

this means that female software developers are a rare sight in Norwegian companies.

Although this historical low point sparked efforts to increase the number of women in these

professions, the results of these efforts are yet to be seen in the workplace. I therefore hope

that the reader will forgive me for using the male pronoun when referring to the singular

software developer. While other researchers have looked explicitly at gender differences

among computer scientists and software developers (e.g. Rasmussen & Håpnes, 1991; Kleif

& Faulkner, 2003), this is not an issue in this thesis.

As recommended by Seale, a topic guide was prepared before the interviews,

containing topics that were to be covered during the interview. Nevertheless, I attempted to be

as non-directive as possible, asking open-ended questions and encouraging the interviewees to

tell their story in their own words. Since I and all the interviewees are native Norwegians, the

interviews were conducted in the Norwegian language. I do not believe that this had any

undue influence on the outcome of the interviews. The terminology in the software

development field is heavily influenced by English, and I believe that the main concepts of

risk and vulnerability have Norwegian counterparts that have very close, if not identical,

semantic contents. The interviews were recorded and later transcribed in order to facilitate

further analysis. Direct quotes were translated into English by me before inclusion in this

thesis. In doing so, I have attempted to strike a balance between following the original

wording and conveying the tone of the original.

4 The Norwegian University of Science and Technology (NTNU) in Trondheim is the main site for
computer science education in Norway, having more Master-level computer science graduates then all
the other colleges and universities combined.

www.manaraa.com

16

 To the extent that my own background as a software developer5 influenced the

interviewees and the material gathered, I believe this to have enabled me to establish a better

rapport with the interviewees, showing them that I was familiar with their area of expertise,

their language and terminology, as well as their norms and values. Any bias on my part would

have to be blamed on the same familiarity and personal identification with the interviewees,

perhaps contributing to a tendency to view matters from the point of view of the developers

and a “blind spot” to different perspectives. On the other hand, Collins (1984) advocates

“participant comprehension”, demanding that “the investigator him/herself should come to be

able to act in the same way as the native members ‘as a matter of course’” (p. 61, original

emphasis). In this sense, my past as a “native” software developer should have enabled me to

achieve a much better comprehension of the software developers than most ethnographers

venturing into this field.

In addition to my own empirical material, I studied other cases from the literature on

risk, failures and accident involving software and computer systems (Leveson, 1995; Flowers,

1996; Neumann, 1995; Library of failed information systems projects, n. d.). Especially

inspiring was the London Ambulance Service case (Page et al., 1993), which started this

thesis. These cases provided a valuable background for my empirical work and poignant

examples of the vulnerabilities of software systems, as well as the vulnerabilities of those who

use them.

1.6 Structure of the Thesis

In chapter 2 I will present theories pertaining to risk and vulnerability. Ulrich Beck’s notion

of the risk society will be introduced, and I will discuss the idea that we also live an

5 I hold a sivilingeniør (Master level) degree in computer science from the Norwegian University of
Science and Technology (1995) and have worked as a software developer for more than six years. I
was also an employee of FIRM for most of 1999.

www.manaraa.com

 17

information society and how this affects our vulnerabilities. Charles Perrow’s normal accident

theory and Scott A. Snook’s theory of practical drift will be discussed in detail, since they

form the basis for the subsequent analysis of the empirical material. Chapter 3 contains the

results from interviewing 12 software professionals in two Norwegian companies about their

attitudes towards risks and vulnerabilities in their daily work. Emphasising issues of pleasure

and control, the formation of mental models, fragmentation of responsibility, and production

pressures, I investigate whether Perrow and Snook’s theories can be fruitfully applied to the

development of software systems. Finally, in chapter 4 I summarize the findings, discuss their

implications for software engineering work, and try to identify directions for further research.

An appendix at the end lists all the software professionals interviewed during the work with

this thesis.

www.manaraa.com

www.manaraa.com

 19

2 The Risky Information Society

2.1 Introduction: The Risk Society

As citizens of modern, Western societies, we are surrounded by pervasive scientific,

technological and industrial developments, without which modern society cannot be

imagined. In short, we are immersed in technological cultures (Bijker, 2001). While

providing us with an unparalleled standard of living, consumer products and inexpensive

energy, the inescapable consequences of these developments are a set of risks and hazards that

also are unparalleled in the history of mankind. These risks and hazards are no longer limited

in time and space, and there is no one to be held accountable. Accidents in nuclear power

plants such as Three Mile Island and Chernobyl can cause radioactive material to enter the

atmosphere, making large areas far away from the plant itself uninhabitable and increasing the

risk of cancer and foetal deformation for generations to come. Routine discharges of

technetium-99 from the Sellafield reprocessing plant on the Western coast of England can be

found in marine life as far away as the Svalbard islands in the Arctic (Martiniussen, 2002).

The burning of oil and coal in power plants in the U.K. and Central Europe are known to

cause acid rain in Scandinavia (Acid Rain, 2001).

 The Collins English Dictionary defines risk as “the possibility of incurring misfortune

or loss; hazard” (Hanks, 1986, p. 1318). A British Royal Society study group set up to

investigate risks in engineering and public perceptions of risk, defines risk as “the probability

that a particular adverse event occurs during a stated period of time, or results from a

particular challenge” (Warner, 1992). According to Renn (1992), “the term risk denotes the

possibility that an undesirable state of reality (adverse effects) may occur as a result of natural

events or human activities” (p. 56, original emphasis). A high risk denotes a greater

probability that adverse effects will occur than with a low risk. Renn notes that all concepts of

www.manaraa.com

20

risk presuppose a distinction between reality and possibility, since within a fatalistic belief in

a predetermined future the term risk makes no sense. A concept of risk implies making a

causal connection between events and their effects, thereby making it possible to avoid or

mitigate the adverse effects by avoiding or modifying the causal events.

Exactly which activities or phenomena constitute risks is open to dispute, since the

concept of risk is “open to social definition and construction” (Beck, 1986/1992, p. 23). How

risks are perceived is therefore an issue with profound social, economic and political

implications. Any attempt to define a specific phenomenon as a risk and quantify the degree

of risk involved is destined to be disputed by groups with conflicting interests. Nevertheless,

the continuous assessment of risks and the weighing of risks versus perceived benefits seem

to have become an integral part of life in our modern societies. The impossibility of

determining any objective risks involved in human activities makes the perception of these

risks much more important when investigating the influence of risks on people’s behaviour

and individual assessments of risks. The role of the media has therefore been the subject of

research into the public perception of risk.

Risk scholars have in the last decade shifted our view of accidents and disasters from

seeing them as the product of random, freakish events, to having social, organizational causes.

The poison gas leak at Bhopal in 1984, the radiation leak from Chernobyl in 1986, and other

fatal disasters spawned much research into the causes of such tremendous technical failures,

shifting the focus from technical malfunctions to the social and organizational configurations

that contributed to these accidents (Jasanoff, 1994).

Since the publication of Ulrich Beck’s (1986/1992) seminal work, the notion of the

risk society has become an important concept in both theoretical and political discourse.

According to Beck, the industrial society that was the child of modernity is growing into the

risk society of post-modernity. While modern, industrial society was about the distribution of

www.manaraa.com

 21

benefits (“goods”) from industrial production, the risk society is about distribution of the risks

(“bads”) that are the inevitable, complementary consequences of the industrial society. These

risks are not distributed equally alongside the benefits, but will often be imposed on people

who are not in a position to benefit from the “goods” of this risk production.

 The risks unique to the post-industrial society are related to our increased reliance on

complex technological systems, without which we would be helpless. The electricity, gas, and

water infrastructures; the road and rail networks; sea and air transport; when we use these

technologies we accept that there are risks involved in using them. We subject ourselves to

the risk of death or injury every day by using gas ovens, driving a car, or getting into an

airplane. We accept those risks because we feel they are greatly outweighed by the benefits of

these technologies. A different set of risks involved with the use of these technologies might

be overlooked, however. The risks we run by making our societies rely on the uninterrupted

operation of these technological systems, usually do not come to the forefront until an

accident or failure makes them clear to us. Recent electricity blackouts in North America,

Scandinavia and Italy are cases in point.

 The terrorist attacks of recent years have focused our attention on the risks from

external forces, such as the possibilities for malicious assaults on our technical infrastructures,

cities and businesses. The September 11, 2001 attack on the World Trade Centre in New York

showed us that our technological artefacts and complex systems can be turned against us,

becoming the tools of terrorists. The reality and horror of these events and the external risks

notwithstanding, we should not be distracted from other, internal risks associated with

complex socio-technical systems. The ways we manage our technological systems and

organize their operation may also be sources of risk. As we shall see later, the complexities

involved in designing and operating modern technologies can themselves be sources of risk.

www.manaraa.com

22

 The last two decades have seen an explosive growth in a new form of complex

technological systems. While information and communications technologies (ICTs) can trace

their origins back 60 years, advances in ICTs have only recently made them ubiquitous in the

work place and in our homes. Without modern computer and telecommunication networks

working properly, global financial markets would collapse, national and international

transport would grind to a standstill, and groceries would no longer fill the shelves of our

supermarkets. Indeed, many commentators have claimed that since information is the primary

commodity of modern society, we can speak of an information society qualitatively different

from previous eras. An influential voice here has been the Spanish sociologist Manuel

Castells with his three-volume work entitled The Information Age (Castells, 1996-8).

However, as Frank Webster points out (Webster, 2002, p. 8), Castells and other researchers

have greatly differing opinions as to what constitutes an information society and how to

measure the degree to which a society can be said to be informational. While some theorists

emphasise the emergence of technological artefacts, most notably information and

communications technologies (ICTs), others see changes in economic, occupational, spatial or

cultural configurations as more indicative of an information society. According to Webster, it

is difficult to identify any quantitative or qualitative measures that unequivocally set the

“information society” apart from previous eras.

Webster’s critique notwithstanding, I think it would be rash to dismiss the information

society altogether. I believe it is important to investigate why this notion has found such wide

acceptance, especially among politicians. There is widespread use of the term in public and

political discourse. Although theorists routinely employ the term in a broader sense, in

general discourse the emerging information society seems to be closely associated with the

growing number of interconnected computers in physical information networks (most notably

the Internet) and the consequential fall in cross-border communication and organizational

www.manaraa.com

 23

costs. The term is mainly used to denote the possibilities and challenges posed by the growing

use of ICTs and information networks in our increasingly globalised societies. It is this

narrower meaning of the term “information society” that will be the basis for the present

analysis.

In the information society, ICTs and the media play a major role in the formation of

risks, risks sensibilities and risk perceptions (Van Loon, 2000). As Van Loon points out:

As the global economy, the world political order and most socio-cultural
systems are nowadays bound to high-speed and high-frequency information
flows, there is no escape from the impact of telecommunications on processes
of decision-making and anticipation. However, apart from accelerating
information flows, ICTs also contribute to the acceleration of risks. (Van Loon,
2002, p. 12)

The mere speed of information exchange diminishes the time available for contemplation and

reflection, with the consequences that may have for decision-making and political processes.

Further investigation into the role of ICTs and risks in the information society is therefore

warranted. The proliferation of ICTs also has consequences for the vulnerability of our

societies, as we shall see in the next section.

2.2 Vulnerability of the Information Society

The Collins English Dictionary defines “vulnerable” as “1. capable of being physically or

emotionally wounded or hurt. 2. open to temptation, persuasion, censure, etc.” (Hanks, 1986,

p. 1702). Vulnerability is then the quality or state of being vulnerable. Blaikie et al. (1994) see

this term in the context of natural hazards:

www.manaraa.com

24

By vulnerability we mean the characteristics of a person or group in terms of
their capacity to anticipate, cope with, resist, and recover from the impact of a
natural hazard. It involves a combination of factors that determine the degree to
which someone’s life and livelihood is put at risk by a discrete and identifiable
event in nature or in society. (p. 9).

These definitions emphasise the vulnerability of individuals or groups of individuals when

faced with unwanted events. However, vulnerability can also be exhibited by systems.

Einarsson and Rausand (1998) employ the term to “describe the properties of an industrial

system that may weaken its ability to survive and perform in the presence of threats” (p. 535),

focusing on “the (business) survivability of the system” (p. 542). Systems in this context may

be “societies or states, a population of inhabitants in a certain geographical region, companies

or technical systems” (Wackers, n. d., Various definitions). When investigating the

vulnerability of software systems, the emphasis will be on this systemic definition of

vulnerability, since:

Vulnerability is also often used in relation to a society’s information and
communication infrastructures. A society’s vulnerability to technical
breakdowns, electronic terrorism and electronic warfare rises in accordance
with the increasing centrality of ICT infrastructures for important sectors of
society (finance, administration, defense, business). (Ibid.)

Clearly, the ubiquity of ICTs in the Western world has profound implications for our personal

vulnerabilities and the vulnerability of our societies.

When discussing the hazards contributing to the vulnerability of ICTs rather then the

abstract notion of vulnerability, I prefer to use the plural term vulnerabilities, denoting the

diverse set of “weak spots” that make a system susceptible to damage or failure.

Vulnerabilities can be exploited by external forces outside the system itself, or they can be the

source of internal systemic failures. ICTs are clearly vulnerable to a long list of threats, both

external and internal. Power failures and other physical hazards such as earthquakes, water

www.manaraa.com

 25

floods, etc. can seriously impair a systems ability to function as intended. These

vulnerabilities can best be dealt with by physical safety measures such as redundant power

supplies or duplicate systems in different locations. Other external threats may take advantage

of weak points that are the result of internal vulnerabilities. Attempts at unauthorized access

(“cracker” attacks6); deliberate attempts to disrupt the normal operation of systems through

denial of service attacks7; computer viruses, worms, and “Trojan horses;”8 all of these are

external threats that can compromise computer systems. These malicious attacks are

motivated by a variety of factors, but have become commonplace in today’s interconnected

world. They need to be taken very seriously by anyone with a computer connected to the

Internet or any other computer network.

 The internal vulnerabilities of a computer system are normally related to software.

Flaws and errors in the program code are known as “bugs,”9 and are inevitable in any

program of non-trivial size. The exponential cost of tracking down and fixing bugs is a well

known phenomenon for software professionals. Some bugs make the computer “crash” (i.e.

cease normal program execution), while others cause more subtle errors in calculations or

data manipulation. Others again may give rise to security flaws that can be exploited in the

ways mentioned above.

6 In popular usage, the term “hacker” denotes someone who attempts to gain unauthorized access to
computer systems. Dedicated programming virtuosos feel that this is an unfortunate appropriation of a
term they reserve for themselves. They prefer to call the computer criminals “crackers”.
7 For instance by flooding a system with requests for service, tying up computing resources and
bandwidth to the detriment of legitimate users.
8 A computer virus is a small program that spreads itself from computer to computer by attaching itself
to other programs or files, possibly carrying a destructive “payload”. A worm is similar to a virus, but
does not need another program to spread itself. A Trojan horse is a malicious program masquerading
as a useful program, but containing malicious software that for instance creates a “back door” into the
affected computer to be exploited at a later time.
9 The origin of the word is usually attributed to an episode in the early days of computing, when a
computer malfunction was found to be caused by an insect (“bug”) who had managed to get inside the
computer, thereby causing the failure. Hence also the word “debugging” for the process of tracking
down software errors.

www.manaraa.com

26

 Apart from the systemic vulnerabilities associated with ICTs, we also have to consider

the vulnerabilities imposed by ICTs on their users, as well as society in general. As mentioned

above, security flaws or software bugs can give unauthorized persons access to information

systems, possibly violating the privacy or confidentiality of individuals or corporations. These

vulnerabilities are becoming increasingly important as companies and governments use

computer systems to store and process information about their customers or citizens. The

existence of false or misleading information can have grave consequences for individuals, for

instance in connection with credit ratings or criminal records.

 Another aspect of the vulnerability of the users of ICTs relates to the extent that

computer systems expose their users to hazards. People regularly trust their lives and safety to

computers; modern aircraft are for instance “fly by wire”, i.e. fully under the control of

computers; computers monitor nuclear power plants and control medical equipment. Fatal

accidents that were traced to software errors have occurred in all these areas. Other computer

systems may not put their users’ life in direct jeopardy, but still put them at risk when their

functions and capabilities do not match the requirements of the users. A computer system

could be operating without technical flaws, but still fail to provide its users with the

functionality they need in order to perform their tasks. The system could also be inadequately

equipped to handle unforeseen events or accommodate changes in its environment. The

mismatch between user requirements and the actual capabilities of the computer system could

compel users to change their interactions with the system, using it in ways not intended by its

original designers. This could in turn expose further vulnerabilities both in the system itself

and in its users. Vulnerabilities of this kind are predominantly related to the design of

software, and therefore highly relevant to this thesis and the research question at hand.

Examining the conditions under which software is developed, and learning as much as we can

www.manaraa.com

 27

about the vulnerabilities of computer systems, has therefore become crucial in assessing the

vulnerability of the information society as a whole.

 In order to establish a theoretical framework with which to analyse the social and

organizational factors contributing to these vulnerabilities, we turn to two influential theories

within the research on high-risk systems: Charles Perrow’s normal accident theory and Scott

A. Snook’s theory on practical drift. These are covered in the next two sections.

2.3 Normal Accidents vs. High Reliability

One of the seminal works on risks and accidents is Perrow’s Normal accidents (1984/1999).

By examining a large number of accidents in fields as diverse as nuclear power plants,

petrochemical plants, aircraft, the space program, and DNA research, Perrow is able to

formulate normal accident theory (NAT). His basic tenet is that accidents are inherent to any

technical or socio-technical system exhibiting certain characteristics; in such systems

accidents are bound to happen – it is in this sense that accidents are normal.

In order to analyse a system’s propensity for accidents, Perrow introduces the concepts

of complexity and coupling. To measure a system’s complexity we must look at the

interactions between the components of the system. Most systems are designed with linear

interactions in mind. Linear interactions are the well understood, sequential interactions

where a component will typically get its input from an “upstream” component, do some sort

of transformation, and subsequently deliver its output to a “downstream” component. If one

component fails, it is relatively easy to locate and understand the point of failure and

consequently handle it without catastrophic results.

On the other hand, if a component of the system serves multiple functions or is

connected to several other components, the interactions are said to be complex. A component

such as a water pump in a nuclear plant may be used for several different tasks, reducing the

www.manaraa.com

28

costs of the plant. A failure of this one component, however, will affect the operation of the

system in a much more serious manner than in the linear case. The failure can manifest itself

in ways that make the source of the failure difficult to locate and handle, thus increasing the

potential for disaster. The possibilities for unplanned and unexpected sequences of events are

much greater in systems with complex interactions.

The concept of coupling is used by Perrow to classify systems according to the

strength of the connections between their internal components. The term tight coupling is

meant to describe a situation where there is no slack or buffer between two items, so that what

happens in one directly affects what happens in the other. This originally mechanical term is

used as a metaphor for systems where there are more time-dependent processes; more

invariant sequences; there is only one way of reaching the goal; and there is little slack in

supplies, equipment and personnel. Conversely, in loosely coupled systems processing delays

are possible, the order of sequences can be changed, alternative methods to achieve the goal

are possible, and slack in resources is possible.

Traditionally, accidents like the one at the Three Mile Island nuclear power plant in

the U.S. in 1979 have been blamed on human error, specifically errors on the part of the

operators responsible for monitoring and controlling the plant. Perrow’s view is that the cause

of such accidents must be sought after in other places than in the apparent failure of human

operators. The sheer complexity of these large technical systems makes the interactions

incomprehensible to any individual or even group of individuals. Accordingly, accidents are

inherent properties of the complex and tightly coupled system.

It is important to emphasis that a system is not either complex or linear, nor is it either

tightly or loosely coupled. Any system will have both complex and linear interactions and

tightly coupled as well as loosely coupled subsystems. Perrow’s point is that the more

www.manaraa.com

 29

complex interactions a system exhibits, and the more tightly coupled it is, the more the risk of

accidents increases, and so the vulnerability of the system.

Since Perrow’s theory sees accidents as “normal” within tightly coupled, complex

systems, it has been criticized for not being able to prescribe remedies that could help us build

safer systems. Indeed, Perrow’s only solution seems to be that we abandon the idea of

building complex systems like nuclear power plants altogether, because the risks are too great

to bear. Perrow’s theory also underplays the dynamic aspects of systems and organizations,

since he does not discuss how the risks and vulnerabilities can change over time. For Perrow,

these are inherent properties of the systems which can only be changed by changing the

system itself to make it more loosely coupled and reducing the number of complex

interactions.

To se the relevance of Perrow’s theory for this investigation into the risks of software

systems, we have to look at some of the unique properties of software that make it inherently

complex. Every part of a software system is unique. Almost by definition, if a software

developer has produced two equal modules of the same system, then he has not done his job

properly, since the code for one module could have been reused in the other. In fact, much of

a software developer’s task consists of finding similarities and abstracting behaviour in such a

way that the same code can be used in as many situations as possible. This means that any

software system engineered after these principles will exhibit a very high degree of

complexity, since any component of the system will be used for several different tasks and

will be connected to many other subcomponents. A failure of any such component will

therefore have a large detrimental impact on the operation of the system as a whole. An error

in a subcomponent that is widely used across the system can be hard to track down and fix.

Coupling is a concept that is used in software engineering theory as well as in accident

theory. A widely use software engineering textbook defines coupling as:

www.manaraa.com

30

Coupling is a measure of interconnection among modules in a software
structure. Coupling depends on the interface complexity between modules, the
point in which entry or reference is made to a module, and what data pass
across the interface. In software design, we strive for the lowest possible
coupling. Simple connectivity among modules results in software that is easier
to understand and less prone to a “ripple effect” … caused when errors occur at
one location and propagate through a system. (Pressman & Ince, 2000, p. 347)

Clearly, this notion of coupling is related to Perrow’s concept, although the match is not

complete. While software engineering practice dictates minimizing the degree of coupling by

confining the interactions between components to a limited number of clearly defined

interconnections, this does not necessarily decrease the coupling in Perrow’s sense. The

interconnections can still be strong even if they are limited in number. Processes can still be

time-dependent; there can be invariant sequences; and little slack in the interactions between

components, even in a system with low degrees of coupling in the software engineering sense

of the word. In fact, all of these factors which constitute tight coupling in Perrow’s sense are

abundant in most software system. Normal accident theory therefore tells us that failures in

software systems should come as no surprise, they are to be expected, and thus normal.

Perrow’s theory has drawn criticism from the STS field, where scholars have pointed

out that his position is a technological determinist one. By viewing accidents as purely causal

effects of the properties of technological systems, he underestimates the influence of social

factors on these issues, and prematurely absolves us from the responsibility for technological

disasters. He also takes away our ability to deal with these issues through social and

organizational measures. While still providing us with important tools for evaluating the risks

and vulnerabilities associated with specific technological system, we need to elaborate further

on his ideas in order to arrive at a satisfying theoretical basis for the present research

questions.

Perrow and other proponents of normal accident theory study dramatic accidents and

spectacular systemic failures, stressing the inevitability of accidents in complex systems.

www.manaraa.com

 31

Other researchers have concentrated on successful complex organizations, or high reliability

organizations (Roberts, 1990; Sagan, 1993). High-reliability theorists tend to take a more

optimistic view of our ability to manage complex systems and organizations. While still

acknowledging failures as inevitable, they advocate technical and organizational measures

such as continuous training, accountability, and redundancy (duplicating technical subsystems

or organizational functions to reduce the likelihood of accidents should one component fail).

These measures are believed to reduce the risks to acceptable levels.

For a more dynamic view of risks and vulnerabilities, combining the features of normal

accident theory and high reliability theory, and providing us with a basis for analysing the

social and organizational aspects of risks and vulnerabilities, we turn to Scott A. Snook and

his theory of practical drift.

2.4 Practical Drift

In his book Friendly fire (2000), Scott A. Snook undertakes a thorough analysis of the 1994

incidents when two U.S. Air Force fighter planes accidentally shot down two U.S. Army

helicopters carrying U.N. peacekeepers over Northern Iraq after erroneously identifying the

friendly Black Hawk helicopters as enemy Iraqi Hinds. An Airborne Warning and Control

System (AWACS) aircraft, equipped with highly advanced radar and communication

equipment was in place, monitoring air traffic and communicating with aircraft in the area,

but did not act to prevent the fighter planes engaging and shooting down the friendly

helicopters. All 26 people aboard the helicopters perished. No serious technical malfunction

could be found and no single human error could explain how this tragedy could occur.

Consequently, the causes of the accident had to be sought in the social and organizational

fabric of military operations. By investigating the incident and tracking the events that led up

to the fatal shooting, Snook is able to formulate a theory of organizational breakdown that

www.manaraa.com

32

offers an explanation of how a tragedy like the friendly fire incident over Northern Iraq can

happen in an organization that is specifically designed to avoid this kind of accident. By

developing accounts of the accident on several levels, from the individual, group, and

organizational levels to a cross-level account, Snook builds his theory of practical drift – “the

slow, steady uncoupling of practice from written procedure” (p. 194).

Snook argues that in any organization, rules and procedures laid down when designing

the organization will not be able to cover all situations that may arise. Rules may even be

conflicting, or minute adherence to detailed procedure may not be possible for practical

reasons or may be in direct conflict with the overall task at hand. Also, the operational

environment of the organization will change over time, rendering rules and procedures

increasingly obsolete. In such situations, local practices will develop that are seen as locally

efficient, growing out of the logic of the task in hand. Snook calls this “practical action.”

Across all levels of his analysis and with all actors involved, Snook finds that “globally

untoward action is justified by locally acceptable procedure” (p. 182). Practical action is the

driving force behind practical drift.

www.manaraa.com

 33

Figure 1: Theoretical Matrix (Adapted from Snook, 2000, p. 186)

The matrix in Figure 1 illustrates Snook’s theory of practical drift. It captures three

dimensions: situational coupling, logics of action, and time. The vertical axis represents the

degree of coupling inside an organization. This concept is borrowed from Perrow’s accident

theory as described above, and refers to the level of interdependence between subunits within

the organization. In a tightly coupled organization, each subunit has frequent communications

and interactions with most of the other subunits and the actions of one subunit directly affect

what happens in the other subunits. Unlike Perrow, however, Snook focuses on the dynamic

nature of coupling. The patterns of interdependence between subunits change back and forth

over time as the organization faces different contexts. Different situations encountered by the

organization entail different demands in terms of subunit cooperation. A loosely coupled

situational context can be handled by one or a low number of subunits without involving the

other subunits, thereby minimizing the need for communication and interaction. In a tightly

coupled situation, however, coordinated actions from many or all of the subunits are required.

www.manaraa.com

34

In the military domain of Snook’s research, the routine day-to-day air operations in the “no

fly zone” in Northern Iraq constituted a loosely coupled situation, requiring little interaction

between the army and air force subunits of the military task force. However, a combat

situation requiring the joint efforts of all military branches is a very tightly coupled situation

indeed, requiring communication and interaction between all subunits involved, and the

observance of globally understood rules. As we shall see later, this transition from a loosely

coupled to a tightly coupled situational context is where practical drift can manifest its most

dangerous consequences.

The horizontal axis represents what Snook calls logics of action, defined as “systems

of scripts, norms, and schemas among which people shift according to context” (p. 188). They

are “context-dependent mind-sets or frames that influence behavior in predictable ways”

(ibid.). Members of an organization change their logics of action depending on the context

they are faced with. In this case between rule-based logics of action, where the rules take

precedence in governing people’s actions, and task-based logics of action, where behaviour is

adapted to solving the tasks at hand.

The circle of arrows in the middle of the diagram represents time. The arrows suggest

a circular motion between the four quadrants of the matrix; each quadrant representing a

different combination of situational coupling and logics of action. Quadrant 1 is the system as

designed on the drawing board, with a set of global rules and procedures prescribed by the

designers. The rules of an organization will frequently be designed with the most demanding

and tightly coupled situation in mind, making sure that such a situation will be handled

correctly. Quadrant 2 represents an organization that is operating as designed. The transition

from quadrant 1 to quadrant 2 happens when an organization is set up; in Snook’s case when

the United States launched “Operation Provide Comfort” in Northern Iraq and the “Combined

Task Force Provide Comfort” took to the field. At first, the novice members of the

www.manaraa.com

 35

organization followed the rules as they were designed by the Pentagon system planners. The

situation and organization were new to everybody involved, so rules were followed under the

assumption that not following them could have severe consequences, at least in the form of

punishment from superiors. The rules were designed with a tightly coupled, worst-case

combat scenario in mind. This scenario would require extensive interactions between all the

different military units involved in the operation. However, the actual, day-to-day operations

of the task force did not require these extensive interactions. Instead, each unit found itself

performing its tasks relatively independent of the others. U.S. Army helicopters would ferry

military personnel and U.N. peacekeepers in and out of the area, while Air Force fighter

planes would patrol the no fly zone. Airborne air traffic controllers would monitor the skies

above Northern Iraq in their highly advanced AWACS “control tower in the sky”. In effect,

the situation was loosely coupled, but with the members of the organization following rules

designed for a very tightly coupled situation. This is an unstable state of affairs, and the point

where practical drift sets in.

The transition to quadrant 3 of the matrix is characterized by a shift from a rule-based

to a task-based logics of action. As mentioned, the members of the organization at first feel

obligated to follow the detailed set of rules set up to govern the general operation of the

organization and the interactions between its subunits. However, as they become more

familiar with the operational context, the focus shifts from following the rules to completing

the tasks at hand. Since the organization encounters loosely coupled situations most of the

time, the detailed rules designed to cope with tightly coupled situations may feel overly

controlling and an unreasonable burden. The rules may not even match the practical situations

that arise in real life operation; they may be difficult to comply with within the constraints of

time and resources; or following the rules may actually be in direct conflict with the tasks at

hand. Over time, global rules may become increasingly irrelevant to the local situations. The

www.manaraa.com

36

completion of tasks takes precedence over following the rules, and locally practical

interpretations and adaptations occur. As Snook puts it, “[w]hen the rules don’t match,

pragmatic individuals adjust their behavior accordingly; they act in ways that better align with

their perceptions of current demands. In short, they break the rules” (p. 193). It is worth to

point out that practical drift is not a symptom of wilfully negligent behaviour of members of

the organization – this is normal. Not in Perrow’s sense that it is a direct property of the

system, but in the sense that this is normal behaviour by normal people. The process is usually

gradual and imperceptible, hence the notion of drift. As Snook puts it: “After extended

periods of time, locally practical actions within subgroups gradually drift away from

originally established procedures” (p. 194, original emphasis). Usually, the demand for

efficiency at the local level is the reason behind the drift and determines its path. Therefore,

“[o]ver time, incremental actions in accordance with the drift meet no resistance, are

implicitly reinforced, and hence become institutionally accepted within each subunit” (p.

194). Each day that passes without any adverse effects from the local adaptation of rules will

grow a false sense of confidence and contribute to a reinforcement of the local practices.

Different subgroups will tend to develop different local adaptations to the globally

defined rules. Different local contexts entail different pragmatics in response to the tasks of

the subunit. In Task Force Provide Comfort, incoming aircrews were initially briefed on the

colour schemes of enemy aircraft. For some reason, this requirement disappeared or “drifted

away” over the years. Army helicopters were initially required to file detailed flight plans and

stay in constant communication with AWACS crews. However, since helicopter flights were

done on an ad-hoc basis and the destinations often were unknown at the start of the flight, it

was not possible to complete flight plans in advance and keep AWACS controllers informed.

Although people within one unit may have adapted rules and procedures to fit their local

context, they will usually assume that people in the rest of the organization are sticking to the

www.manaraa.com

 37

original set of globally established rules. They are not aware of the drift that has occurred in

other units, which is what can have disastrous consequences as the situational context

changes.

When a loosely coupled situation suddenly becomes a tightly coupled one, we move

from quadrant 3 to quadrant 4. For some reason, a coordinated effort of many or all subunits

is required; making communication, interaction and adherence to common rules and

procedures necessary. Years of drift away from the established baseline of global rules along

different paths result in a catastrophic coordination failure as each unit follows its own locally

adapted set of procedures, while at the same time expecting every other subgroup to be

following the original set of baseline rules and procedures. In the skies above Northern Iraq,

two fighter planes shot down two friendly helicopters while a crew of AWACS controllers

looked on. On the other hand, the assumption that others will follow the formal rules is a

rational one, and the best that any member of the organization can do.

The final part of the cycle in Figure 1, transitioning from quadrant 4 back to quadrant 1

represents a redesign of the organization to prevent the accident from ever happening again.

However, the danger is that in an attempt to remedy every possible cause of the accident, the

result is to overshoot, burdening the organization with even more complex rules and

procedures, thus setting the stage for a new turn of the cycle. As Perrow puts it, “[t]he tighter

the rules, the greater the potential for sizable practical drift to occur as the inevitable influence

of local tasks takes hold” (p. 201).

The theories of Perrow and Snook provide an interesting framework with which to

analyse the risks and vulnerabilities exhibited by software systems. We have seen that the

complexity of software system is comparable to that of the industrial systems studied by

Perrow. I intend to show that the dynamics of software development organizations can be

compared to that of the military organizations studied by Snook. Armed with these theories,

www.manaraa.com

38

we are ready to meet the software professionals producing complex software systems and

investigate to what extent their organizations are subject to practical drift, what social factors

contribute to this process, and whether this affects the vulnerability of the software.

www.manaraa.com

 39

3 Software Development: Pleasure or Pain?

3.1 Introduction

Considering the hyper-modern, high-tech world that software developers inhabit, it is perhaps

surprising that personal skills play a crucial role in their work life. Developers judge

themselves and others on the basis of craftsmanship and dedication to their job. Most of them

will emphasize that computer programming is as much an art as a craft, involving high levels

of creativity and the occasional stroke of genius. Ironically, while software developers

produce tools that will make the work life of others more automated and less dependent on

individual skills, their own work is still labour-intensive and dependant on the knowledge and

skill of each developer. The software professional has much in common with the medieval

stonemason, who used his superior skill to fashion great cathedrals out of stone. Software

developers may work with more intangible materials, but like the great artisans of the Middle

Ages, the software developers take great pride in their work, experiencing immense pleasure

when they see great structures rising from humble building blocks; but also great pain when

the results of painstaking work crumble before their eyes.

3.2 Two Companies – Two Contexts

In order to gather empirical data to form a basis for research into social and organizational

factors influencing the work of software developers, I interviewed 12 software professionals

in two companies based in Oslo, Norway. One, Telenor Mobile, is a large mobile

telecommunications company where the software systems are an integral part of a larger

operation. The other, FIRM, is a smaller company that markets and sells its own Internet-

based market research software. These two companies are described in the following.

www.manaraa.com

40

3.2.1 Telenor Mobile

Telenor Mobile10 is the largest Norwegian mobile telecommunications operator. It is a

subsidiary of Telenor, the successor to the state-owned telecommunications monopoly.

Telenor is still the dominant telecommunications provider in Norway and is listed on the Oslo

Stock Exchange, as well as the NASDAQ Stock Market in the U.S. Telenor Mobile has about

2.3 million customers11, the vast majority subscribers to its GSM digital mobile telephone

services, which have been in operation since 1994. Data about these customers are stored in

several computer systems, ranging from mainframe systems to modern database systems.

Some of these systems date back several decades while others are recent developments. The

systems represent a wide range of hardware and software platforms.

The data stored about customers include information about phone calls that form the

basis for billing the customers, as well as data pertaining to the telecommunication services

and products that the customers subscribe to. These could be voice mail, short message

services (SMS), WAP, e-mail, fax services, etc. Some data could be stored in several places at

once, creating a potential for inconsistent data across different systems. These data need to be

accessed in a variety of ways, by different organizational units within Telenor Mobile, by

different computer systems and in different contexts. For instance, data about telephone usage

need to be accessed by the billing systems in order to produce the quarterly telephone bill.

The same data may have to be accessed by the customer service department when a customer

calls in to complain about the size of the bill. When a customer wants to add a new service to

her subscription, she could do this by calling customer service or do it through a web interface

on the Internet.

10 Web site: http://www.tmc.telenor.com
11 Norway has approximately 4.5 million inhabitants, making more than half of the population Telenor
Mobile customers.

http://www.tmc.telenor.com/

www.manaraa.com

 41

The development of new products and services is seen as essential in order to maintain

customer satisfaction and to keep Telenor Mobile’s reputation as one of the world’s most

technologically advanced mobile telecom providers. This means that new products and

services are constantly being developed in order to provide the customers with what are

termed “value-added services”, i.e. services that add value to the customers’ mobile

subscriptions beyond basic voice communication.

In order to satisfy the needs of a range of different client applications to access data

dispersed over a multitude of different computer systems, Telenor Mobile has established a

so-called middleware layer within its computer system architecture. The middleware layer

forms a well-known interface for client applications (collectively known as channels), hiding

the complexities of accessing customer data from the so-called backend systems. By

abstracting the process of communicating with the backend systems, channels can be

developed without detailed knowledge of the inner workings of the middleware layer and the

backend systems. Conversely, the backend systems can be developed and maintained without

specific knowledge about the channels. From the client applications’ view, the middleware

layer and backend systems form a “black box” that is understood only by its external interface

defined by its input and output data. The responsibility for developing this middleware is in

the hands of a dedicated section of the IT department of Telenor. This middleware section

consists of around 20 project managers, software architects, software developers, and testers.

In order to do their job, the architects and developers have to communicate with managers,

marketing people, and other software professionals developing channels and backend

systems. I conducted personal interviews with the head of this department and 7 of the

developers who are responsible for developing and maintaining the middleware.

www.manaraa.com

42

3.2.2 FIRM

Future Information Research Management (FIRM)12 was founded in 1996. Bjørn Haugland,

the founder of the company, had previously founded one of the most successful market

research companies in Norway. He felt that the emerging Internet technology could be used to

revolutionize the market research industry by automating a lot of the manual work involved in

putting together questionnaires, collecting responses, tabulating data, and producing reports.

Response data could instead be easily collected by using World Wide Web technologies and

Internet questionnaires. FIRM’s main software product, ConfirmIT, allows customers to

produce online surveys using a 100 % web-based application. Application areas for the

product include market research studies, customer feedback and employee satisfaction

surveys. Feedback data is immediately accessible through an online reporting tool; a huge

improvement from the weeks needed to code and tabulate data with traditional methods.

FIRM’s clients include some of the largest market research companies in the world, as well as

a number of global corporations. FIRM is currently a privately held company with offices in

Oslo, Stockholm, London, New York and San Francisco.

Working for a relatively new, upstart company, FIRM’s developers have the luxury of

being able to employ the latest technologies at their disposal. They do not have to deal with a

legacy of old systems and technologies, but can gain a competitive advantage by using

“cutting edge” tools and systems. This fact is actively used both in marketing and recruiting,

and attracts developers with a desire to work with the latest “toys.” Development of the

ConfirmIT product is done in Oslo by a team of 14 software developers, 5 of whom were

interviewed during the work with this thesis.

12 Web site: http://www.firmglobal.com

http://www.firmglobal.com/

www.manaraa.com

 43

3.2.3 Contexts for Software Development

The two companies, Telenor Mobile and FIRM, provide interesting contrasts as well as

similarities. The developers at each of the companies are remarkably similar in terms of age

and background and they all have software development as their primary job tasks. The

contexts in which they perform these tasks differ, however.

 The most conspicuous difference between Telenor Mobile and FIRM is in their size.

Telenor Mobile with its 1600 employees is a large company by Norwegian standards, and is

in turn part of the Telenor Group, a multinational corporation with interests in 16 countries

and more than 14,000 employees in Norway alone. Telenor Mobile’s activities span a wide

range of different products and services associated with providing mobile telephony, e.g.

operating the network infrastructure and marketing mobile services. Software development is

just a small part of the activities within Telenor Mobile, and the middleware department the

interviewees were drawn from, is a small section within the larger ICT staff. Consequently,

the developers have several layers of management to deal with, and will rarely have any

contact with the top executives of the company.

FIRM, on the other hand, is a much smaller company with about 40 employees in Oslo

and about 60 worldwide. It is centred on the development, marketing and sale of the

ConfirmIT software product, making software development its core activity. Although FIRM

has offices in several countries, the bulk of the software development is done by the 14

member development team in Oslo. Since the development of software is FIRM’s raison

d’être, developers enjoy a relatively high status within the company. The whole of the Oslo

office is located on one floor, making the work environment intimate and informal.

 Another important area where the two companies differ is their relationship with the

users of their software. The middleware software developed at Telenor Mobile does not have

end-users in the normal sense; the “users” of the software are other computer programs that

www.manaraa.com

44

treat the middleware as “black-box” functionality providing basic services that can be

combined to provide higher order services for end-users such as mobile telephony customers.

The software developed by the developers interviewed at Telenor Mobile does not have the

kind of user interface we normally associate with computer programs, where human operators

can interact with the systems using a screen and keyboard. This does not mean that the

middleware developers do not have to relate to any users, however. There are still

“customers” that request functionality and from whom requirements have to be elicited.

The developers at FIRM have a different relationship to their users since they develop

an Internet-based application that will be used by human end-users. A complex graphical user

interface (GUI) forms the boundary between the computer system and the person operating it.

The developers will therefore have to take into account the fact that the systems will be used

by people with varying degrees of computer skills. Some of the end-users are known at the

time of development, but most of them will use the system after it is developed and put into

production. The end-users will be highly skilled in the application domain of the application,

in this case market research, most probably surpassing the software developers’ insights into

the same area.

These companies provide interesting case studies, as they afford us a glimpse into the

world of the professional software developers. By interviewing people heavily involved in the

practice of creating software, we can gain insights into their social world and see which

factors influence the vulnerabilities of the software they produce. Having developers from

two different companies and two different contexts allows us to investigate whether these

differences affect the vulnerabilities of their respective software products. Similarities can

also be important, as they hint to important issues that can provide a basis for further research

and theory building.

www.manaraa.com

 45

3.3 Practical Drift in Software Development Organizations

In order to apply Snook’s theory of practical drift to software systems, we need to look at the

conditions under which these are developed. Recall Figure 1 on page 33, which illustrates

Snook’s theory. The starting point is quadrant 1, with an organization that is created on the

drawing board. Rules and regulations are defined to cope with the most tightly coupled

situation imaginable and covering all situations foreseen by the designers. In a software

engineering organization, we can compare this to the processes and organizational setup

prescribed by a plan-oriented software process such as the Unified Software Development

Process (Jacobson et al., 1999). The transition to quadrant 2 would be starting a software

development project following the process to the letter. According to Snook’s theory, this will

be an unstable state of affairs since the rules are designed for a tightly coupled organizational

set-up, but in most cases this will be “overkill” when it comes to the actual situation. We

would expect the rule-oriented behaviour to be replaced by a task-oriented behaviour as

individuals and subgroups within the organization pragmatically adjust their actions to be

more in tune with the practical demands of the tasks at hand. These adjustments will in

practice contribute to “practical drift” away from the baseline of rules and methods prescribed

by the process. When attempting to establish whether practical drift occurs in software

development organizations and the possible sources of such drift, we need to look at three

areas. First, whether methods and processes in fact contribute to the overall quality of

software, and thus a lower degree of vulnerability. Secondly, we need to establish which

forces can contribute to practical drift during software development. Finally, we have to

investigate how this can have a detrimental effect on the software produced.

www.manaraa.com

46

3.4 Software Methods and Processes

Compared to other engineering discipline, the construction of software has a short history.

Modern computers arose from code breaking efforts in the U.K. and U.S. during World War

II. When computing was still in its infancy, the distinction between hardware and software

was blurred. Programming the computer consisted of toggling switched on the computer’s

console or feeding it punched cards with instructions in binary machine code. In the late

1950s and early 1960s the first programming languages that were independent of a specific

computer started to appear, and so software development became a separate task. Due to the

still limited capacities of the hardware, computer programs were short, designed for specific

tasks, and offered limited possibilities for human input. Each piece of software was developed

for use in a specific location and usually developed by in-house programmers. Most software

was “batch programs” which ran overnight without user intervention.

Fuelled by advances in solid-state physics, semiconductors, and electronics, the power

and capabilities of digital computers increased exponentially in the post-war decades. As the

computers grew smaller, faster, and more powerful, they got better facilities for user

interaction and demanded new kinds of software. It soon became clear that the software could

not keep up with the advances in hardware in terms of performance and reliability. Relative

costs of software when compared to hardware soared; experienced software developers were

hard to find; and the few who existed were not able to keep up with the demands for

increasingly complex software as the computer constantly found new applications in

government, the military, and private companies. The existing tools and programming

languages proved to be inadequate for the new tasks that had to be solved if the new

computers were to realise their full potential. Software development projects were more often

than not fraught with enormous delays and cost overruns. The resulting software was often

faulty, poorly documented and almost impossible to understand and maintain by others than

www.manaraa.com

 47

the original developers. This situation sparked an intense effort within research communities

to come up with solutions to what was dubbed the “software crisis” by the end of the 1960s.

 This marked the birth of the software engineering field. It was felt that the practice of

software development should be modelled on other engineering disciplines, like civil

engineering (i.e. building houses, bridges, roads, dams, etc.), mechanical engineering, and

even computer hardware engineering. These practices had proven successful in taking

activities that were once crafts based heavily on personal skills and turning them into

predictable, scientifically based disciplines capable of forming the basis for industrial

production. By dividing software development into independent tasks and prescribing

systematic procedures for structuring and producing the programming code itself (methods);

for structuring the interaction between developers, managers, customers and users in

predictable and quantifiable processes; as well as prescribing which artefacts (documents and

program code) should be produced during the development process, it was believed that

software development would become every bit as predictable and manageable as the other

engineering disciplines. Consequently, a lot of effort has been put into creating methods and

processes for software development in the last decades. The perhaps best known and most

influential of the so-called plan-oriented approaches is the Unified Software Development

Process (USDP13) (Jacobson et al., 1999). Other important software development processes

include the Dynamic Systems Development Process (DSDM) (http://www.dsdm.com) and

Extreme Programming (XP) (Newkirk & Martin, 2001).

 Most of these processes rely on dividing the software development activities into

phases with specific tasks, timeframes and milestone artefacts for each phase, modelled on

the phases of for instance a bridge construction project. The classic phases of software

13 Perhaps better known in its commercial incarnation as the Rational Unified Process (RUP),
developed by the Rational Corporation, now a part of IBM. See http://www.rational.com for more
information.

http://www.dsdm.com/
http://www.rational.com/

www.manaraa.com

48

engineering are analysis, where feasibility studies are performed and requirements are

gathered from users and other stakeholders; design, with detailed planning about how the

system is going to be programmed; construction, where the actual programming and testing is

performed and documentation is written; and deployment, where the finished system is

installed for use in its target location. Along with maintenance, which covers systems

management and service after deployment, these phases are referred to as a system’s lifecycle.

 Software methods and processes can be said to be strict or rigid if they contain

detailed descriptions of the content of the phases, tasks and artefacts to be produced,

prescribing checklists and procedures for error reporting, code review and other activities that

are not directly related to programming. Such rigid processes purport to result in predictable

software development projects by mimicking the processes that have proven effective in

industrial production; in effect leaving little to the discretion of the individual developer.

Many early processes prescribed strict separation of these phases, especially between the

analysis and design phases on one hand and the construction phase on the other. It was felt

that by having specially trained systems architects and designers analyse and divide the

development tasks into independent subtasks that could be handled by individual

programmers, previous problems with unstructured, unmaintainable code produced when

programmers were left to their own devices could be avoided. This would in effect

concentrate all the creative, analytical work to the analysis and design phases, leaving only

menial, routine work to the programmers.

 Neither Telenor Mobile nor FIRM can be said to employ rigid processes or methods.

In fact, neither company uses any specific, named process, but both have developed their own

processes based on ideas from the more influential methodologies mentioned above. The

managers see it as important to have processes that are internalized and actually used by the

developers. If the processes do not gain approval from the developers, they run the risk of

www.manaraa.com

 49

becoming “shelfware:” binders of irrelevant documents gathering dust on a shelf. Both

companies have developed software tools that support their processes, containing flowcharts

and checklists guiding the developers through each step in the process. The companies also

constantly try to improve their processes through regular evaluations. It is also a goal to

standardize the processes used; for Telenor Mobile across different departments and sections;

for FIRM across offices in different countries. FIRM is perhaps the company which has seen

the greatest change in attitude towards methods in recent years. Starting from scratch with

only a handful of developer in 1996, the emphasis was more on creativity and speed in

reaching the market with a new product, and less on establishing processes for software

development. As the company grew and more developers got involved, it became clear that

formal processes were needed to create a more predictable work atmosphere for the

developers; to meet customers’ demands and expectations; and to increase the quality of the

software itself. FIRM has therefore cooperated with software engineering and process quality

researchers in order to develop a tailor-made development process. They now employ a

flexible approach to software development. The overarching process can be tailored to the

size and demands of each individual project, providing the developers with a range of

processes to choose from. A simple change in some internal system functionality might be

done “ad hoc”, i.e. without any formal measures; while development of a customized feature

for a big client will be done with all the checks and safeguards in place.

 The interviewees at both companies agreed that methods and processes are necessary

in order to produce quality software. Especially in contexts where extreme reliability is

needed, such as space exploration and telephone exchange software, developers saw strict

adherence to methods as crucial. We can safely conclude that employing strict rules and

regulations in the form of software processes and methods are viewed as essential in order to

produce highly reliable software, both by software engineering researchers and practitioners

www.manaraa.com

50

in the field. Much like the military operations studied by Snook, a software development

project is set up to achieve a specified objective by following an initial set of global rules. It

has a limited timeframe and a clearly defined “chain of command.”

Having shown the relevance of Snook’s theory, we know turn to some of these factors

that contribute to the drift away from the processes and methods of the software development

project as it is designed on the drawing board, focusing on four main issues: pleasure and

control, mental models, production pressures, and fragmentation of responsibility.

3.5 Pleasures in Technology

Developers clearly value their skills and independence, and see too strict methods as boring

and stifling creativity. As developer Knut says when talking about his experiences with

previous employers:

The consultancy business was rigid, very rigid. And I think that will sometimes
be at the expense of enjoyment and creativity. You are in a way sitting like a
robot in such a system, just sitting and producing something. That’s a large part
of the reason why I left the consultancy industry.14

Low and Woolgar found similar sentiments in their participant observation among software

developers. One developer, William,

spent a good deal of his time yawning and sitting slumped, staring into his
computer screen … To him, the structure was overwhelming. The amount of
written documentation that was required, the proliferation of structured
documents set out in the CASE [Computer Aided Software Engineering] tool
that he had to use, the deliberate sequence of work that he was supposed to
follow. And all seemed to produce in him a defeated lethargy. (Low &
Woolgar, 1993, p. 41, original emphasis).

14 Interview K. M. Hansen, developer Telenor Mobile, Oslo: June 18, 2003.

www.manaraa.com

 51

Issues of pleasure and enjoyment seem to be a crucial factor for software developers. All the

developers interviewed reported that feelings of pleasure and enjoyment were important

motivating factors in their day-to-day work life. Most software developers see their job as an

art as much as a craft, and the creative parts of the work, such as analysis and design, are

especially valued. Some of the developers also reported taking enormous pleasure in the

actual coding work; like Daniel, who has had periods of working very long hours because the

job tasks have been “fun.” When performing programming tasks he “can maintain an

incredible work capacity without burning out.”15 This echoes the software professionals

studied by Tine Kleif and Wendy Faulkner (2003). They found the same pleasures in software

development and absorption in technical tasks. In that sense, the data gathered by

interviewing software developers at Telenor Mobile and FIRM are remarkably similar to the

results of Kleif and Faulkner’s studies of hobbyist robot builders and professional software

engineers. Creativity was mentioned by most of the developers as contributing to the fun and

pleasure of software development. As Daniel puts it:

What’s fun is the creative part. It’s either being architect, designing and
working with concepts; or just programming, if you believe in what you are
making.16

The pleasure seems to be derived from using one’s technical skills in making something that

works. Solving a problem in an especially efficient and elegant way is commonly associated

with being a “hacker”, a term denoting someone with an exceptional aptitude for

programming and with immense pride and joy in his skills. The aesthetic dimension of

programming seems to be important for a self-confessed hacker like Peter:

15 Interview D. Bakkelund, developer Telenor Mobil, Oslo: June 16, 2003.
16 Ibid.

www.manaraa.com

52

Q: Do you feel pleasure when programming?
A: Yes! Yes, and that’s connected to the hacker thing, that it feels good in your
soul, in a way, if I’m able to do something that’s beautiful. Absolutely.17

Or as Steinar puts it:

I think the analysis and design part of the job is the most fun. Finding the
solution to an intricate problem using software, doing it in an elegant way,
preferably by using patterns … Putting together things you know from before,
like structures, that is fun.18

Another recurring theme that crops up when asking the developers about their work, concerns

issues of control and ownership. As Kleif and Faulkner suggest, technology in general and

software in particular provides an arena for power and control and for overcoming

uncertainties. The feeling of control seems to be a requisite for enjoying a task. As Steinar

puts it when asked about the less enjoyable aspects of work:

[W]hen you’re not in control of the system you’re supposed to work with …
that’s probably the least satisfactory of what I work with now, because you can
be struggling with an error that turns out not to be yours for quite some time …
That can be frustrating. [Emphasis added]19

Rasmussen and Håpnes (1991) also found an astonishing fascination with computers and

programming in their study of computer science students. An all-male group of

“programming virtuosos” shunned classes and professors’ assignments, choosing instead to

sit all night at computer terminals experimenting and “work[ing] for the joy of the process

and the grand feeling of achieving control” (p. 1111). Again there is an emphasis on the

feeling of control as the main motivator and source of pleasure. However, among the

developers at Telenor Mobile and FIRM, no evidence was found that indicated that the people

17 Interview P. Myklebust, director of development FIRM, Oslo: June 23, 2003.
18 Interview S. Lundeberg, developer Telenor Mobil, Oslo: June 13, 2003.
19 Ibid.

www.manaraa.com

 53

taking pleasure in technology are people that feel less powerful and unable to cope with

uncertainties in other areas of life, as Kleif and Faulkner seem to believe. None of the

interviewees conformed to the stereotypical “nerd” image of the computer professional.

The developers clearly distinguish between tasks that are enjoyable or “fun” and those

that are less so. As we have seen, tasks that allow developers to employ their creativity and

exercise control are considered fun. Routine and repetitive tasks where the developer is not in

total control are seen as boring or “not fun.” Tasks that fall in the latter category are typically

software testing, i.e. systematically exercising software modules or subsystems to ensure that

they conform to requirements and do not fail or produce incorrect results. Estimating, i.e.

trying to assess the time and resources needed to implement a certain task, is seen as an

especially joyless task. This is probably due to the high level of uncertainty involved and the

lack of control felt by the developer given the task of predicting future resource needs and

timelines. Importantly, estimating and testing are recognized as the most crucial in increasing

software quality and lowering vulnerability. Incorrect estimates are seen as the source of

unrealistic deadlines and production pressures; and “testing is the only way of really getting

rid of bugs in your software,” as Daniel points out20.

An important question is therefore whether the developers let the “fun factor”

influence how well they perform these important tasks. Daniel admits that

Developers are … not exactly immature and childish, but a bit like, you try all
the time to adjust so you have fun. Most people working here … think
programming is very fun, and so you try to sneak out of the things you don’t
think is fun.21

Writing proper technical documentation to aid in future maintenance of the software is also a

crucial task that is seen as menial. Rodin feels that

20 Interview D. Bakkelund, June 16, 2003.
21 Ibid.

www.manaraa.com

54

Good developers are a special type of people and many of them hate [writing]
documentation. Often it’s the best [developers] that hate [writing]
documentation, those who write the best code.22

While all the developers emphasize that they do not shirk their responsibilities even though

some of their work tasks may feel less enjoyable, most agreed that the level of fun associated

with a task will definitely influence how much work goes into it, and ultimately affect the

quality of the software. The general feeling towards these tasks is a “get-it-over-with

attitude,” as Steinar calls it.23

 It is worth noting that a majority of the developers were not trained in computer

science or software engineering, but has strayed into the field from mathematics and other

engineering disciplines, often after doing programming as part of the work within their

original fields. This suggests that development work attracts people with specific personality

traits and perhaps with a special aptitude for this kind of work. Whether this makes them

especially prone to the factors discussed here, is an interesting avenue for further research.

3.6 Mental Models

While a fascination with the computer and a sense of joy in controlling it can be an asset for a

software developer, helping him funnel his skills and creativity into his software, it can also

be a source of pain. The sheltered environment of the university computer lab is rarely the

norm in the professional work place. The software developer’s intimate knowledge of the

machine and its ordered world can be an obstacle when communicating with other groups

involved in the development process. I propose that this is largely due to different mental

models.

22 Interview R. Lie, systems architect/developer Telenor Mobil, Oslo: June 20, 2003.
23 Interview S. Lundeberg, June 13, 2003.

www.manaraa.com

 55

Paul Edwards (1996) suggests that much of the fascination felt by computing

professionals stems from the simulated character of the “microworlds” they create and the

omnipotent power and control the programmer can wield there (pp. 171-172). In order to

build a computer program that is supposed to interact with human beings and assist them, the

software developer will have to build a mental model of the relevant aspects of the real word.

Due to the nature of computers and software, such a model will have to be based on the

reductionist and deterministic principles that govern computers. The model must be “stripped

of both social and emotional complexity” (Kleif & Faulkner, 2003, p. 313). This means that

every aspect of the mental model will have to be spelled out and follow deterministically from

the principles, rules and laws governing the microworld contained in the software system. No

aspect of the software system can be left vague or open to interpretation. There is no latitude

for social factors or human idiosyncrasies outside the mechanical workings of a positivist

world. To put it bluntly, there is no room for constructivism inside a computer program.

Regardless of whether one subscribes to theories of social constructivism or not, it does not

require a stretch of the imagination to see that the intricacies of the real world tend to get lost

when forced into a computer system; and the social complexities particularly so. Software

developers, like other engineers, have been drilled in analytic and problem solving and tend to

“perceive the world of mechanisms and machinery as embodying mathematical and physical

principles alone” (Bocciarelli, 1994, as cited in Kleif & Faulkner, 2003, p. 313).

 Gorman & Carlson (1990) use the concept of mental models when investigating the

cognitive processes involved in technical innovation, using the development of the telephone

by Alexander Graham Bell and Thomas Edison as case studies. They borrow the term from

cognitive scientists who use it to describe “the models people have of themselves, others, the

environment, and the things with which they interact.” (Norman, 1988, as cited in Gorman &

www.manaraa.com

56

Carlson, 1990, pp. 134-135). Of course inventors and software developers are not the only

ones to construct a mental model of a given system:

[T]hrough interaction with a target system, people formulate mental models of
that system. These models need not be technically accurate … but they must be
functional. A person, through interaction with the system, will continue to
modify the mental model in order to get a workable result. Mental models will
be constrained by various factors such as the user’s technical background,
previous experience with similar systems, and the structure of the human
information processing system (Norman, 1983, pp. 7-8).

It is clear that different people with different background coming in contact with a computer

system will have widely differing mental models of how the system works, what it is capable

of doing, and what it takes to change it. The developers of a system possess intimate

knowledge of the technical foundations and the assumptions behind it. Their managers, often

without a technical background, see the system in terms of the time and resources needed to

build it, as well as the requirements and constraints presented to them from the customer and

other stakeholders having an interest in the system. The (present or future) users of the system

form their mental models of it on the basis of their understanding of the real world domain,

the user interface the systems presents them with, and the data input and output to and from

the system. Most groups will have this “black box” view of the system, seeing it in terms of

its external properties and behaviour. The system developers are of course the notable

exception, with their mental models based on the inner workings of the system. This sets the

stage for a variety of problems of communication between software developers, their

managers and the users of the software that, as we shall see, profoundly affects the

vulnerability of the software.

 The concept of mental models bears striking resemblance to Bijker’s (1995) notion of

technological frame, capturing the idea that different social groups will have different “goals,

key problems, problem-solving strategies (heuristics), requirements to be met by problem

www.manaraa.com

 57

solutions, current theories, tacit knowledge, testing procedures, and design methods and

criteria” (p.123) relating to a specific artefact. Bijker also introduces the concept of degree of

inclusion into a technological frame, describing “to what extent the actor’s interactions are

structured by that technological frame” (p. 143). This concept is important in analysing the

apparent malleability or obduracy of a technological artefact, as it captures the degree of “sell-

in” of actors in a specific technological frame or mental model. As Gorman and Carlson point

out (p. 136), the technological frame does not include their concept of mechanical

representation (p. 141), the actual physical objects with which the inventor (developer) or user

interacts, using them in combination with abstract ideas to address new problems. In the

current context, mechanical representations map to the software systems under construction or

use, or other software systems with which the developer or user has had previous experience.

 Within software engineering research, Peter Naur (1985) has proposed that

programming can be understood mainly as “theory building,” relating the software to its

anticipated use. He suggests that programming “should be regarded as an activity by which

programmers form or achieve a certain kind of insight, a theory, of the matters at hand” (p.

253). The main task of a software developer is therefore not the production of the program

text itself, but the understanding of the aspects of the real world that are to be modelled,

automated or replicated, and the formation of a theory of how this can be achieved by a

computer program. Christiane Floyd (1992) expands on this and sees software development

as a form of reality construction where developers rather than analysing requirements

construct them from their own perspective, affected by their personal priorities and values.

These views of software development emphasize the active part of the programmers in the

construction of meanings of software systems, as well as the power they have to embed their

view of reality and the social world in the artefacts they produce. All of these related concepts

have one thing in common, namely that they embody the insight that different individuals will

www.manaraa.com

58

have different ideas and notions about a software system and how it relates to them and their

environment. In the following, the concept of mental models will be used as basis for the

analysis.

Most of the developers interviewed expressed frustration with some of their project

leaders and managers. At Telenor Mobile, most of the project leaders do not have a technical

background, but have business or economy educations. At FIRM, with its development

activities on a smaller scale and managers with technology backgrounds, this is less of a

problem, even though the sentiments can be felt there as well. As Steinar has experienced,

project leaders’ lack of technical knowledge can be problematic, especially when eliciting

requirements:

I have seen on several occasions that they haven’t quite been able to catch what
is important because they are not technologists. So I believe that … there has to
be technical personnel participating all the way from the start of any project,
it’s a problem if you don’t.24

Otherwise, you risk “in the worst case [delivering] to the customer something they actually

didn’t ask for. That has occurred.”25

Communicating with existing and potential users of their software can also be a source

of frustration for a developer. Rodin puts it like this:

24 Interview S. Lundeberg, June 13, 2003.
25 Ibid.

www.manaraa.com

 59

I have learned that it is incredibly difficult for a non-computer person to
understand that it can be so damned difficult. They just can’t comprehend that
it can be so difficult, it’s just a box with some stuff on the screen, it can’t
possibly be so difficult to do. They can’t understand it. The times I have tried
to work on this, I see that with a few exceptions it’s often easier for me to get
into their problem formulation than the other way around … For developers,
users are a nuisance.26

Even communicating and cooperating with fellow developers can pose problems. Due to the

complexity and intractability of software, developers who have not been directly involved in

programming a specific piece of software will most often take a black box view of other

developers’ work.

At the bottom of these communicative problems are the different mental models that

developers, managers, and users form of the system. It seems to be exceedingly difficult for

people with different mental models of a system to find common ground and cooperate.

Developers feel, perhaps justly, that their intimate knowledge of the system gives them a

privileged insight. They seem to resist seeing the world from other people’s viewpoint and

ascribe the difficulties in communications to the lack of technical insights and interest in

managers and users. In Bijker’s (1995) parlance, their inclusion in their respective

technological frames is too high for effective communication and cooperation. Each group

struggles to make its technological frame or mental model the dominant one. This might be an

especially painful struggle for the software developers. As Undheim (2002) found in his

fieldwork among Telenor engineers, in the struggle between marketing people, managers and

engineers, the engineers did not have the power or the “symbolic vocabulary to infect others”

(p. 119), choosing instead to remain “silent”. The engineers were left in their purely technical

domain “wondering what is going on, and both parties ironise over the incompetence of the

other” (p. 117).

26 Interview R. Lie, June 20, 2003.

www.manaraa.com

60

Both Telenor Mobile and FIRM employ people who specialise in bridging the gap

between customers and users who provide the requirements and functional specifications for

the software, and the software developers who are given the task of developing the system.

These are people with the ability to see things from several groups’ viewpoint simultaneously,

moving from one technological frame to the other. Usually these “bridge builders” are

developers, probably because the “technical” mental models or frames are difficult to enter

without the knowledge and experience of a software developer. Rodin sees himself as a

bridge builder:

I think it’s very difficult to realise what it’s like not to understand [what it is
like to be an ordinary user] … [It’s] very difficult to realise how it is not to
know something when you know it [yourself] … [Bridge builders] are people
… who understand that the world is more than programming.27

Still, this gap between the developers and the non-technical stakeholders is probably the

largest cause of vulnerable software. When customers are unable to formulate their

requirements for a new system in such a way that developers can understand them and

translate them into a form suitable for inclusion into a computer system, and developers are

unable to communicate with the customers in order to understand how the software they are

building will be used in a real world setting, the risk of ending up with software that is not

used the way it is intended increases dramatically. As we saw in the case of the London

Ambulance Service, this type of vulnerabilities can have grave consequences, as users

struggle to make the software work in their world. The manner in which designers and

engineers “inscribe” their ideas and notions into an artefact based on their assumptions about

the potential users and their world has been described by Akrich (1993). She introduces the

concept of “scripts” to indicate this idea. Software developers are thus able to “inscribe” the

27 Ibid.

www.manaraa.com

 61

software systems with “scripts” representing their world views and ideas about the

prospective users of the system.28 Wyatt (1998) argues that the malleability and flexibility of

the computer is illusory; in order for the technology to be used; “malleability has to be

excluded during the process of development” (p. 6). The constraints on the users of a

particular software system are therefore considerable and not easily changed.

3.7 Production Pressures

The software development team is usually supervised by a project leader whose job it is to

establish the team, secure resources, plan the execution of the software development project,

divide the project into subtasks, compile estimates, communicate with stakeholders, and

monitor progress as the project moves along. As mentioned previously, many developers see

project leaders’ lack of technical skills as a source of frustration, causing problems of

communication. We have also seen that the developers admit to giving the task of estimating

a low priority, due to its perceived joylessness. A project leader without a technical

background will have no independent basis for assuring the quality of the estimates he

receives from the developers. Added to the fact that estimating software projects is

notoriously difficult due to the large number of uncertainties involved, it is no wonder that

correct estimates are something of a rarity in most software projects. Notoriously, estimates

seem invariably to undershoot the actual effort needed for a specific task.

 Incorrect estimates thus usually mean unrealistic deadlines. For project leaders and

managers, a lot could be at stake by not keeping the forecasted deadlines. Customers may

have been promised completion of a project within a specific date and may have based their

own activities on this; in Telenor Mobile’s case, a large marketing campaign for a new

28 Although an actor-network theorist, Akrich emphasises the ideas and worldview of the designers
being built into an artefact and adding to its obduracy (Hommels, 2001, p. 38; p. 169). The relevance
to the present discussion is clear.

www.manaraa.com

62

product may have been scheduled involving TV and newspaper commercials, making a

missed deadline unbearable. All of this adds up to a tremendous pressure to keep deadlines

and finish software modules within the estimated times. As Daniel says:

I have often handed off software I felt could have used one more week of
[work] … [The code] that you hand off is very chaotic, because of the time
pressure you just about manage to cram in the functionality you need and then
you don’t have time to clean up afterwards to make it maintainable. It’s like,
just chaos.29

The consequences in terms of reliability and maintainability of the software should be

obvious. Most of the developers feel that it is the testing of the software once it is coded that

suffers the most under tight deadlines. Testing is the last task before a piece of software is

regarded as completed, and is usually the place where the pressure of the deadline is felt most

acutely. As Rodin says, when the developers are not given enough time to do testing properly,

“What happens is that you test the best scenario or the things you know will work. Then you

don’t get to test all the failure scenarios and once [the program encounters a situation] outside

the norm, it blows up.”30 Developer Per explains why this happens:

29 Interview D. Bakkelund, June 16, 2003.
30 Interview R. Lie, June 20, 2003.

www.manaraa.com

 63

Q: Does it occur that deadlines are set that make the quality of [the software]
suffer?
A: Yes.
Q: Why is that?
A: Well, it’s the business side who wants things out there, and who feels that
everything is too slow and puts enormous pressure [on the developers], sells
things before they’re [done], sells things to a deadline that [is nonnegotiable].
…
Q: Do you feel that they lack understanding of the fact that it can take time
because you have to maintain quality and security?
A: Yes. Yes, absolutely.31

Again we see that the “silent engineers” (Undheim, 2002) are left to do their best within the

confines of their technical domain. As Diane Vaughan found in her investigation into the

Challenger space shuttle disaster (1996), a culture of institutionalized production pressure can

be dangerous for an organization dealing with complex systems (pp. xii-xiv). At NASA, it

played a major role in the tragic outcome of the shuttle launch; at Telenor Mobile or other

software development organizations, it can lead to faulty software being put into production

and the consequences that entails.

 FIRM does not seem to suffer the same degree of production pressures. Their flexible

approach to development processes, having a range of processes to choose from according to

the scale of the project at hand, seems to yield beneficial results. Their experience with the

different development processes, the ConfirmIT system and the application domain also

enables them to produce more precise estimates, thus avoiding much of the production

pressure. Although I am not able to draw any definite conclusions on the basis of the present

material, I would expect that this leads to more reliable software, since the time spent on

testing and quality assurance does not suffer to the same degree.

31 Interview P. Hustad, systems architect/developer Telenor Mobile, Oslo: June 16, 2003.

www.manaraa.com

64

3.8 Fragmentation of Responsibility

Although software testing is seen as crucial in order to ensure that the software is as bug-free

as possible, both Telenor Mobile and FIRM employ additional strategies in order to achieve

high quality software. A process of peer code review, where one developer’s code is inspected

by another developer is seen as a crucial stage in the software development process at both

companies. However, the actual content of this stage seems to be unspecified and left to the

individual developer performing this review, or QA (quality assurance) as it is called at

Telenor Mobile. As with other tasks that do not directly produce code, it is at risk of being

taken more lightly when the pressure is on to reach a tight deadline. Interestingly, the

perception of the skill of the person whose work is up for review, versus the skill of the

reviewer, can play a factor in determining how thorough the task is done, as Steinar

volunteers:

Q: Could it be that you take [QA] less seriously if you’re in a hurry?
A: That could happen. Or if you have a lot of confidence in the person who
made the code. That’s also a factor.
Q: Right. So if you’re assigned to do QA on the work of someone you consider
being very skilled, it could be that you just assume that it works?
A: Yes, that’s a factor. I would probably do that if I was pressed for time, for
instance, and … it was important to get this done, then I would be prone to go
more lightly at it than if it was someone I didn’t know … who made that
code.32

Daniel confirms this; “It depends on who [wrote the code]. If it’s someone I know is very

good, then I might not go in depth, I would just look it over.”33

 Consequently, in a stressed situation the important QA steps could be taken very

lightly, based on the perceived skill of a developer. It is not hard to imagine that a developer

32 Interview S. Lundeberg, June 13, 2003.
33 Interview D. Bakkelund, June 16, 2003.

www.manaraa.com

 65

who is reviewing code written by a developer with greater perceived skills will be hard

pressed to raise a warning over code he does not understand, but simply assume that

everything will work. This could in turn let serious errors slip through one of the few quality

assurance measures, thus increasing the vulnerability of the software. It is also debateable

whether errors and other shortcomings actually can be adequately identified simply by

inspecting the textual program code of a piece of software.

 Software bugs, i.e. logical flaws that result in program crash or faulty data, are always

at the forefront of developers’ attention, simply because their presence cannot be ignored. As

discussed previously, bugs are not the only cause of vulnerabilities in software. Other issues

concerning security and privacy are also important when assessing the vulnerability of a

software system. However, among the developers interviewed, these issues seemed absent

from their daily concerns. As Daniel puts it, “security is a neglected area within software

development, mostly, and [there is] very little knowledge [about security issues] among

developers. There’s very little time and focus on it from management.”34 It can again be

argued that the lack of technical skills and knowledge among project leaders and managers

prevents them from recognizing the dangers of security and privacy flaws, much less

implementing countermeasures. It is to a large extent left to the individual developer to ensure

that such flaws do not exist in the software when it is put into use.

In much the same way that Snook found that important issues risk being neglected due

to diffuse responsibility (2000, pp. 119-121), it seems clear that the majority of the developers

feel that the responsibility for ensuring security and privacy lie elsewhere. Daniel says that

concerns over security are not issues in his day-to-day work, because “there’s a guy over there

that’s responsible for security, he knows it, the rest of us just use some stuff and then it will

34 Ibid.

www.manaraa.com

66

take care of itself most of the time.”35 Steinar concurs that since safety and privacy issues are

handled by others “I don’t have to think about such things. I’m sure there are others who have

this as their area of focus, but I don’t.”36

Considering the pressures forcing developers to take shortcuts it can only be expected

that security and privacy vulnerabilities will find their way into the finished products. These

types of vulnerabilities are especially insidious, since they may not surface during the normal

operation of a computer system. Unlike bugs and other errors which normally manifest

themselves in obvious manners, security flaws can lie dormant for years before they are

discovered and exploited.

3.9 The Results of Practical Drift

I have now identified several factors that can contribute to practical drift during the

development of software, and established that software developers will drift away from the

strict rules of the prescribed software development process. We saw that this could have a

detrimental effect on the quality and reliability of the software, thus increasing the

vulnerability of the software systems produced. Although neither Telenor Mobile nor FIRM

have strict operational rules and procedures to the same extent as a military operation, they

both have established software development processes and methods that are meant to ensure

the reliability of the software. To see the relevance of Snook’s theory in this context, we turn

again to Figure 1 on page 33. The establishment of an actual software development project

can be seen as a transition from quadrant 1 to quadrant 2, employing a baseline of rules and

regulations. The social factors influencing the developers constitute a drift from quadrant 2 to

quadrant 3. The software system under construction has typically been divided into modules

35 Ibid.
36 Interview S. Lundeberg, June 13, 2003.

www.manaraa.com

 67

and subsystems, each assigned to different developers or groups of developers. According to

Snook’s theory, each of these will have worked along with their tasks, imperceptibly drifting

away from the baseline of process and methods; each of them, however, along different paths.

Especially in situations where the development process feels overly restrictive, the developers

will adapt to the demands of the practical tasks at hand, replacing the rule-based logics of

action by task-based logics of action more suited to the environment the developers work in.

As we have seen, the individual developers will make decisions to deviate from the rigour of

strict methods based on what appears practical, but also according to the personal inclinations

of the developers, emphasising those tasks that are associated with “fun.” We also saw that

production pressures, difference in mental models, and communication barriers prompted

developers to deviate from following procedures designed to ensure software reliability.

 Snook predicts a rapid shift from the relative stability of quadrant 3 when the situation

suddenly changes from a loosely coupled one to a tightly coupled one, demanding that several

subgroups work tightly together towards a common goal. In our present context, this would be

the stage of the software project were modules and subsystems are brought together for

systems and integration tests, and finally putting the complete system in operation. This is

when different parts of the system developed by different parts of the project organization are

supposed to start interacting and working together. As we learned above, the processes

surrounding testing and subsystem integration are especially prone to drift due to social

factors. The relevance of Snook’s theory is clearly demonstrated, as it identifies this as a point

where the risk of disaster is greatest and therefore demanding careful attention by developers

and managers.

 At Telenor Mobile and FIRM there were no stories of disasters on the same scale as

the London Ambulance Service (LAS) case that started this thesis. Many of the developers

could recount tales (mostly from previous employers) of potentially disastrous events only

www.manaraa.com

68

averted by sheer luck or by working round the clock; or struggling to come to terms with

hopelessly unrealistic deadlines and incompetent managers. More often than not, incidents

like these are suppressed or forgotten and are never subjected to analysis within software

development organizations. The fact that the LAS case was thoroughly investigated and

analysed makes it nearly unique and provides an excellent opportunity to learn. We can find

several of the social factors discussed here in the report from the official investigation into the

LAS case (Page et al., 1993). The report describes how the project was supposed to use the

PRINCE project management methodology, but “[a]lthough certain elements of the PRINCE

methodology were used, at least in the initial stages, it was not used in a properly structured

way through the duration of the project” (para. 3068, my emphasis). The report does not

explicitly mention the conditions of the software developers whose task it was to build the

CAD system, but it is clear that tremendous pressures were put on the project team to meet a

nonnegotiable deadline for delivery of the finished system. The inquiry found that the

company developing the software was “late in delivery of software and, largely because of the

time pressures under which they were working, the quality of their software was often

suspect” (para. 3079). The consequences were that tasks such as quality assurance (QA) and

testing suffered (para. 3083-3086). Other important parts of the project methodology were

disregarded, as software developers “in their eagerness to please users, often put through

software changes ‘on the fly’ thus circumventing the official Project Issue Report (PIR)

procedures whereby all such changes should be controlled … Such changes could, and did,

introduce further bugs” (para. 3082). Communication between software developers and the

Central Ambulance Control and other staff that were to use the CAD system was also flawed

during design and implementation. Accordingly, “there was incomplete ‘ownership’ of the

system by the majority of its users” (para. 1007o) leading to little participation from LAS staff

and an expectation that the system would fail. More importantly, a lack of understanding of

www.manaraa.com

 69

the users’ needs and requirements led to the design of a system with “a need for perfect input

formation in an imperfect world” (para. 4007a). The deployment of a system that did not fulfil

user needs also led to local adaptations on the part of the users:

[S]atisfactory implementation of the system would require changes to a number
of working practices. Senior management believed that implementation of the
system would, in itself, bring about these changes. In fact many staff found it
to be an operational ‘strait jacket’ within which they still tried to operate local
flexibility. This caused further confusion within the system (para. 1007p, my
emphasis).

In the LAS case, we are able to recognize many of the same social factors that were found

among the developers at Telenor Mobile and FIRM. The factors mentioned here were by no

means the only causes of the spectacular failure of the LAS CAD system, but they were

certainly important in contributing to it. They provide us with a worst-case scenario of what

practical drift can lead to in a software development organization.

 We also saw that important differences existed between Telenor Mobile and FIRM,

which had an influence on the vulnerability of the software produced at the respective

companies. FIRM had a more flexible range of software development processes, thus being

able to work with more realistic estimates and less production pressures. FIRM’s developers

also enjoyed a higher status within the company and more power to get their worldview

across than what was the case at Telenor Mobile, where several layers of management exist

between them and the top executives. There are strong indications that these differences in

social organization influence the vulnerability of the software they develop.

 From the users’ perspective, inadequate communication with the software developers

and conflicting mental models could lead to confusion about their requirements and to the

development of software that does not address the needs of its users. As the LAS case so

www.manaraa.com

70

brutally demonstrated, this could in turn expose further vulnerabilities both in the users and in

the software itself.

www.manaraa.com

 71

4 Conclusion: Living with Vulnerability

4.1 Summary

We began this investigation at the London Ambulance Service and saw how a new computer

system that was meant to make life easier for emergency staff and safer for the general

population turned out to have the opposite effect. People’s lives came at risk due to the

vulnerabilities of a computer system, thus exposing the vulnerabilities of human beings in a

technological society. In the LAS case, no grave technical flaws were found in the system

itself; in a sense it only did what it was designed to do. This is something that this incident has

in common with many accidents from a wide range of areas involving complex technical

systems; technical malfunction may play a role, but it is usually social or organizational

factors that turn minor incidents into fatal accidents. On the other hand, when accidents do not

happen, or incidents are contained before they can escalate to damaging accidents, social and

organisational factors usually play an important role as well, contributing to less risk.

 The research question behind this thesis was to look at how social and organizational

factors influence the vulnerability of software systems, placing this research within the field

of science, technology, and society (STS) studies. Employing interdisciplinary approaches,

scholars within this field investigate the role of social processes involved in shaping

technologies and the societal and political implications of their development and use. While

STS scholars traditionally have looked at technological artefacts during their inception and

production, researchers investigating issues of risk and vulnerability have been more

concerned with the hazards posed by new technologies. By examining the public’s

understanding of science and technology and their perceptions of the risks involved, they are

able to gain insights into the ways our lives and social worlds are shaped by our coexistence

www.manaraa.com

72

with risky technologies. In order to gain further understanding of the issues related to the

research question at hand, I first looked at how the risks associated with modern industrial

production have made scholars claim we live in a “risk society”. We also saw how modern

societies are immersed in technology and depend on its operation to the extent that we speak

of our cultures as “technological cultures” and how the advent of information and

communications technologies (ICTs) have fuelled the rise of an “information society”

(chapter 2). Although researchers may disagree whether and to what extent these technologies

represent something fundamentally new, it is no doubt in my mind that ICTs and the advent

of global information networks have transformed how we conduct business, how we organize

our workplaces, what kind of work we do, and how we communicate with others in ways that

have profound social and political implications.

 To further analyse the risks and vulnerabilities surrounding computer systems, we set

out to investigate whether Charles Perrow’s normal accident theory could be fruitfully

applied to this avenue of research. His concepts of complexity and coupling were found to be

directly relevant to computer systems and important tools in describing and analysing

software and its vulnerability. Just as Perrow found in his analysis of nuclear power plants

and chemical factories, faults are to be expected in most contemporary software applications.

Such highly complex and tightly coupled software systems pose higher risks because of their

inherent intractability and impenetrability exceeding human capacities for understanding.

When employed in real life settings, the larger socio-technical system comprising the

surrounding social organization as well as the technical system can attain even greater

complexities that contribute to making accidents expected and indeed normal. However,

scholars within the field of high reliability theory take a more optimistic view than Perrow,

claiming that there are social and organizational measures that can be taken in order to

improve the reliability of a system, thus lowering its vulnerability. While still acknowledging

www.manaraa.com

 73

the inevitability of accidents in complex systems, high reliability theorists feel that measures

like continuous training and redundancy can and should be used to lower the risks associated

with such systems. I concur with these sentiments, especially since Perrow’s view is that

some technologies like nuclear power plants are inherently too complex and risky, and that

these technologies should be abandoned. However, more comprehensive research is certainly

warranted into the role of social and organizational factors in high-risk, high-reliability

systems.

 While Perrow’s theory proved useful as a starting point for assessing the risks and

vulnerabilities involved in complex socio-technological systems, it lacks a convincing

analysis of the social aspects of such systems. Specifically, it focuses solely on the inherent

properties of systems, ignoring the fact that human beings and our complex social worlds are

involved in high-risk systems. Perrow is more concerned with the static properties of complex

systems and does not provide us with the tools needed for analysing the dynamic properties

and individual and organizational issues that can contribute to vulnerabilities. His position is

also a technological determinist one, seeing human and social interactions as unilaterally

shaped by the properties of technological systems. For this reason, we turned to Scott A.

Snook’s theory of practical drift, combining ideas from normal accident theory and high

reliability theories. Investigating the 1994 “friendly fire” incident over Northern Iraq where

two U.S. Air Force fighter planes shot down two U.S. Army helicopters, Snook employs

theories of behavioural psychology and organizational sociology to formulate the concept of

practical action, where adaptations to global rules and regulations are done locally in parts of

a larger organization for pragmatic and sensible reasons. These local changes mean that

subgroups within an organization can drift away from the initial set of rules governing

operations within the organization. This drift occurs differently in different subgroups, setting

www.manaraa.com

74

the stage for disaster when conditions change and action has to be coordinated across multiple

subgroups.

 This theory of practical drift formed the framework for an empirical investigation

among professional software developers in order to ascertain whether Snook’s theory could

be fruitfully employed in order to gain new understanding of the social and organizational

issues affecting the production of software. I set out to identify factors that could be seen as

contributing to practical drift in organizations developing software. My aim was to see how

these factors could affect the vulnerability of the software itself, as well as the vulnerability of

the users of this software. Software developers from two Norwegian companies, Telenor

Mobile and FIRM, were interviewed about their attitudes towards risk and vulnerability, and

their perception of factors that can affect the quality and vulnerability of the software the

produce.

 It can be debated whether the heavily designed and strictly regulated military

organization that is the starting point for Snook’s analysis can be said to be similar to a

software development organization. This issue is important when assessing whether Snook’s

conclusions can be legitimately carried over to this new domain. The obvious differences in

objectives should not distract us from the fact that there are important similarities in the way

these two forms of organization operate, and that important lessons can be learned from

Snook’s analysis. A military operation and a software development project are similar in that

they both are set up to achieve a clearly defined task in a specific timeframe. They are both

governed by rules and guidelines derived from practice and experience from similar

endeavours. Work processes, social organization and the “chain of command” are usually

specified in detail before work starts and are tailored for the specific situation. In both military

operations and software development projects, individuals are expected to show personal

initiative in order to accomplish the task at hand, and in most cases successful completion of

www.manaraa.com

 75

the operation depends on this. In neither case do things go exactly as planned. Although there

are differences in the goals and cultures of these two types of organization, I believe that the

similarities are many and important enough to warrant further investigation.

 When interviewing the software professionals at Telenor Mobile and FIRM, it became

clear that they are prone to practical drift in much the same way as the military personnel in

Snook’s research. The developers see strict rules and processes as necessary in settings were

extreme reliability is needed. However, too strict methods are seen as boring and stifling

developer creativity. The individualistic nature of the developers will make them take

practical, pragmatic action if they feel methods and processes are unnecessary or burdensome.

 I was able to identify four areas where social factors turned out to be contributing to

practical drift. Firstly, issues of pleasure and enjoyment seem to be an important factor for

software developers, motivating them in their daily work and determining their priorities. By

striving to spend as much time as possible with the more pleasurable tasks, important tasks

such as estimating and testing run the risk of being taken less seriously. As these are the tasks

designed for lowering risks and finding flaws in the software, this factor can contribute to

increased vulnerability. Secondly, the different mental models employed by the different

groups involved in software development affect their ability to communicate and achieve a

common understanding of the goals and requirements of the system under development. This

can cause software to be developed that does not fit well within its future use context, and

could lead to vulnerabilities for the users of the software. As we saw in the case of the

London Ambulance Service, a software system based on false assumptions about its users and

their requirements failed horrifically as the emergency call operators and ambulance crews

tried to make it do what they needed it to do. Thirdly, the production pressures imposed on

developers by managers and project leaders to reach project deadlines can force them to take

shortcuts and thus bypass quality assurance mechanisms prescribed by the development

www.manaraa.com

76

processes. Fourthly, a fragmentation of responsibility can occur when the actual contents of

quality assurance and other important processes are not clearly specified. Developers can take

these tasks lightly if they feel that the perceived skill of a fellow developer makes them

unnecessary, or if they feel that they are somebody else’s responsibility entirely, as seems to

be the case with security and privacy issues.

 All these issues constitute social and organizational factors that contribute to the

vulnerability of software systems and to the vulnerability of its users. This is by no means an

exhaustive list, but it demonstrates some of the “non-technical” factors facing software

developers, and it provides a novel starting point that could prove fruitful in the analysis of

the vulnerabilities of software systems. Although these issues have been dealt with by

researchers within the software engineering field, the addition of perspectives from social

science theory in general and the STS field in particular can only improve the understanding

of the complex social and organizational issues surrounding the practice of software

development.

4.2 Implications

I have shown that software professionals are prone to practical drift in their daily practice of

producing software. Processes and methods that are designed to ensure quality and reliable

software are strayed from. This “drift” is understandable, since it has its basis in practical,

pragmatic adjustments to local conditions and the tasks at hand. It is not due to incompetence

or ill will. However, the result can clearly be vulnerable software, making its users vulnerable,

and thereby making our societies vulnerable. It is therefore important that software

professionals be aware of the potential consequences of vulnerabilities in their software. The

links between practical adjustments and the vulnerabilities exposed to the users should be

made clear. However, Snook warns us that we should not overshoot when trying to avoid

www.manaraa.com

 77

failures. Rather than tightening the rules, trying to define processes and methods that are

aimed at producing error-free software, we should realise that the inherent complexities in

computer systems make accidents normal. Systems should be designed in such away that

failures are expected and dealt with. The LAS case is a grim reminder of what might happen

if a system’s design is based upon the near-perfect functioning of all parts of the system,

including its human actors. As we learned from the software developers at Telenor Mobile

and FIRM, the fun and pleasure of creative design and programming are big parts of what

motivates them. It is not advisable to replace the space for individual initiative and

autonomous work with bureaucratic rigour.

Developers, managers, and other groups involved in software production should also

learn to recognize and respect each others “mental models”. Each group should come to

acknowledge the merits of the others’ point of view and make the efforts necessary to gain an

adequate understanding of their frames of mind. Managers and project leaders should strive to

understand the technical issues that developers struggle with, and the unique skills of talented

programmers. This would earn them the respect of their subordinates, and hopefully enable

them to plan projects with more realistic resource allocations and deadlines, alleviating some

of the production pressures that today result in vulnerable software. The developers should in

turn learn to respect the social and organizational challenges tackled by their managers, who

spend their days negotiating with demanding customers, unmotivated users, arrogant

programmers, and impatient executives. All groups need to take the future users of the

software more seriously. Since they are the ones that will be using the software, and

ultimately suffer from its vulnerabilities, their view of the world needs to be taken as the basis

for designing the system. Engineering-minded developers and manages should take into

account the complexities of our social worlds and realize the futility of modelling all aspects

of them in a finite digital computer. Design practices should to a greater extent incorporate the

www.manaraa.com

78

dynamics and flexibility of a world of organizations and social configurations in constant

change.

 Security and privacy concerns seem to be a surprisingly neglected area within the two

companies studied. This is probably symptomatic of a general attitude in most software

development organizations. The number of challenges in producing working software is

daunting even without these concerns. Nevertheless, in a world of viruses, worms, cracker

attacks, and industrial espionage, software professionals need to take constant stock of their

measures against these threats. Our increased vulnerability as data about all aspects of our

lives are stored and processed by computer should be taken more seriously.

 Social science theory has long been ignored by most researchers and practitioners of

software engineering. At best, theories and methods from ethnography, behavioural science

and other fields have been seen as tools to be used to solve software engineering problems,

for instance for studying future software users and eliciting requirements from them. By

instead using these tools for studying the software engineers themselves and their practices,

important insights can be gained that will help us better understand the foundations of

software engineering, its assumptions about the world and social organization and interaction,

and software’s role in home and work life. These are results that will benefit both software

engineering and the social study of technology. The STS field is especially well equipped to

conduct this research, and I hope that this thesis has succeeded in pointing out some areas that

could benefit from such a perspective. In the next section I try to identify a few avenues for

further inquiry.

4.3 Directions for Future Research

Snook’s theory on practical drift is important in that it identifies the concepts of practical

action and the drift away from established rules that it can entail. As we have seen, these

www.manaraa.com

 79

concepts can also be applied within research on software development. However, it seems to

assume that things would be less risky if rules and regulations are followed. Clearly, practical

drift does not occur through malice or incompetence on the part of the individuals within the

organization, but by rational and pragmatic decisions taken by people doing their best. This is

maybe the biggest weakness of Snook’s theory; it does not clearly prescribe an alternative that

would counteract practical drift or incorporate it as a factor when designing organizations and

processes. Being aware of practical drift and anticipating it is a step in the right direction, but

more research is needed to learn more about how we can take these social factors into account

and lower the risks and vulnerabilities associated with our technologies. The path forward lies

in opening up the technologies and the social processes surrounding them. Having the

anticipation of failures and breakdowns built into systems is in my opinion the key to future

low-risk systems. STS scholars should be able to make a significant contribution here, with

their insights into the nature of science and technology, and their body of research into how

new technologies are formed.

 Another weak point in Snook’s theory is his underlying assumption that

practical drift is unequivocally negative. He acknowledges the fact that the local adaptations

constituting drift are all practical from a local perspective. He even emphasizes that a strictly

rule-based logic of action can be directly counterproductive when it comes to achieving the

tasks at hand. However, he does not draw the conclusion that some of these local

optimizations might be to the benefit of the system in question. While my empirical material

does not support any definite conclusions, it seems to me that the software developers’

resistance towards overly strict methods (“overkill” as they call it) may sometimes be the

healthy reaction of skilled professionals. How to distinguish between a benign course

alteration and a dangerous case of practical drift is an entirely different matter, however.

www.manaraa.com

80

Investigating whether and in what cases practical action can lower the vulnerability of a

system, is an interesting avenue for future research.

When it comes to studying software and software developers, an important alternative

to the standard model of software development has proven increasingly successful the past

decade. The so-called free/libre or open source software community has pioneered a

development model based on free access to software, freely available source code and

voluntary contribution from developers (DiBona et al., 1999; Moody, 2002; Raymond, 2001;

Tuomi, 2001). This seemingly unviable conflation of hacker culture and anti-capitalist

idealism has managed to produce software with purportedly equal or higher quality (in terms

of reliability and number of bugs and security flaws) than the usual proprietary industry

model. Some research has been conducted into this phenomenon, but in the context of drift

and vulnerability future research could uncover whether open source developers are less

prone to practical drift than industry developers, and how the differences in development

approaches affect the vulnerability of the software. This research could start with the notions

of pleasure, control, and power explored here. Developers within the open source community

contribute to projects as they see fit and according to personal skills and interests, thereby

benefiting from the effects of having developers who derive pleasure from the programming

tasks and are motivated by doing what they find to be “fun” at any given time. The rewards

for the developers are in terms of respect and admiration from their peers rather than financial

gains. Combined with a review process where the program code is continuously open to

scrutiny and improvement by every other developer, the open model should at first glance

guarantee better software. However, the geographical distribution of developers, lack of

central authority to ensure that the routine tasks are done as well as the “fun” tasks, and

potential high turnover of developers carry with them their own set of risks and vulnerabilities

that can spill over into the software.

www.manaraa.com

 81

 Outsourcing parts of the software development process to low-cost developers in

third-world countries such as India are being increasingly explored as a way of reducing the

costs associated with the production of software (see for instance Kobitzsch et al., 2001).

More research, for instance in the form of case studies of software development projects

where a significant portion of the development work is done in a remote location, should

provide a better understanding of the social and cultural issues involved. The communication

of mental models needed for successful software development across cultural barriers should

be studied and the implications for software vulnerability analysed. It is my firm belief that

such research would conclude that the risks involved in this type of outsourcing far outweigh

any potential benefits. The difficulties of communicating mental models and cooperating on

building software are daunting even when developers, managers and users are located in the

same building. Software development spanning continents, time zones, languages and

cultures would in my opinion be fraught with social and cultural issues that would make any

such venture highly risky. Offshore outsourcing, as it is sometimes called, could conceivably

work in limited, technical domains were the requirements can be unambiguously stated in

advance, and where the required interaction with future users is at a minimum.

 Most of the research on drift and vulnerability has focused on accidents and disasters,

usually of the spectacular kind, such as nuclear accidents and friendly fire incidents. Another

avenue of research which could prove rewarding, would be to study successful organizations

that are able to deliver software on time, on budget, and with the correct functionality. By

comparing their social and organizational contexts with those of less successful counterparts,

important insights could be acquired that would benefit the field of software engineering.

 While this thesis has had the development of software as its focus, and dealt primarily

with software developers, we touched somewhat on the role of the other groups involved in

the production and use of software systems, especially the end-users. They are the individuals

www.manaraa.com

82

who are expected to use the software after it is developed and put into production. A lot of

research has gone into the design of user interfaces and to make computer systems easier to

use. Similarly, software engineering research has taken a particular interest in requirements

elicitation from the end-users. Less research, however, has been conducted on exactly how

misunderstood or unstable requirements contribute to vulnerable software during the

development process; how mismatches between end-user requirements and actual system

operation can increase the vulnerability of the users themselves; and how users cope with

vulnerable software. These are all avenues of research that can benefit from a closer

cooperation between researchers from software engineering and the social sciences, especially

the STS field.

4.4 Anticipating Vulnerability

In one of the most cited and debated articles within the software engineering field, Frederick

Brooks claimed that the essence of software engineering was such that there would probably

not be a “single development, in either technology or management technique, which by itself

promises even one order of magnitude improvement in productivity, in reliability, in

simplicity [of software projects]” (Brooks, 1987, p. 10) within the next decade. Using images

from popular mythology, Brooks compared such a development to the “silver bullet” needed

to slay the “werewolf” of inherent complexity. 16 years later, most of his critics will have to

concede that although a lot of new developments within software engineering were each

heralded as an answer, none has proven to be the decisive silver bullet. Nothing on the

horizon indicates that a werewolf killer will be found in the near future. This echoes Perrow’s

view about our limited ability to understand complex systems due to their intrinsic properties.

The weak points of Perrow’s theory notwithstanding; this is a phenomenon we have to come

to grips with as we surround ourselves with more computers and software, each linked to

www.manaraa.com

 83

other, complex systems. We are increasingly basing our existence on the faultless, continuous

operation of these networks.

 To me, the way forward lies in accepting these risks, shedding our naïve faith in

scientific and technological solutions that are supposed to make complex systems risk-free.

Clearly, the social and organizational issues touched upon in this thesis, as well as the

properties of complex technological systems, show us that we will have to learn to live with

risks and vulnerabilities. This is especially evident within the field of ICTs, as any computer

user can attest to. Efforts should therefore be directed to better understanding the complex

intertwining of the social and the technical that influences the vulnerabilities of our

technologies and thereby of our societies and our selves. Theories from the STS field, with

their emphasis on studying both the social and the technical, should prove invaluable in

gaining understanding of how we can build software systems and other technologies in a way

that takes risks and vulnerabilities into account. Software developers can be trained to

recognize the social nature of their work, rather than seeing it as a purely technical task.

Realizing that other groups may have other mental models or technological frames of their

understanding of software systems, can help developers communicate better with users and

other stakeholders, thereby producing software that is better suited to its future use. By better

understanding software developers, their motivations, and social world, new processes can be

created that makes software development more predictable to managers, eliminating

production pressures as a source of software vulnerabilities. With this new awareness,

software developers could focus on organizing their work in new ways, producing software

that is made less vulnerable not by eliminating risks, but by anticipating them.

www.manaraa.com

www.manaraa.com

 85

Appendix A: List of interviewees

Telenor Mobile

Name Position Date of interview

Paul Skrede Section Manager 13.06.2003

Steinar Lundeberg Developer 13.06.2003

Daniel Bakkelund Architect/Developer 16.06.2003

Per Hustad Developer 16.06.2003

Knut Marius Hansen Configuration

Manager/Developer

18.06.2003

Stian Dahle Developer 19.06.2003

Rodin Lie Architect/Developer 20.06.2003

FIRM

Name Position Date of interview

Peter Myklebust Director of Development 23.06.2003

Trond Johansen QA Manager 23.06.2003

Hans Olav Damskog Developer 25.06.2003

Øyvind Forsbak Developer 26.06.2003

Kjell Tore Hveding Developer 26.06.2003

www.manaraa.com

www.manaraa.com

 87

References

Abbate, J. (1999). Cold war and white heat: The origins and meanings of packet switching. In
D. MacKenzie & J. Wajcman (Eds.), The social shaping of technology (2nd ed.) (pp.
351-371). Buckingham: Open University Press.

Acid rain and critical loads (2001). Electricity Association Environmental Briefing, 33.
Retrieved September 19, 2003, from
http://www.energy.org.uk/Activtys/EnvBrief/AcidRain.pdf

Akrich, M. (1993). The de-scription of technical objects. In W. E. Bijker & J. Law (Eds.),
Shaping technology/building society: Studies in sociotechnical change (pp. 205-224).
Cambridge, MA: MIT Press.

Beck, U. (1992). Risk society: Towards a new modernity (M. Ritter, Trans.). London: Sage.
(Original work published 1986)

Bijker, W. E. (1995). Of bicycles, bakelites, and bulbs: Towards a theory of sociotechnical
change. Cambridge, MA: MIT Press

Bijker, W. E. (2001). Understanding technological culture through a constructivist view of
science, technology, and society. In S. H. Cutcliffe & C. Mitcham (Eds.), Visions of
STS: Counterpoints in science, technology, and society studies (pp. 19-34). Albany,
NY: State University of New York Press.

Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (1994). At risk: Natural hazards, people’s
vulnerability, and disasters. London: Routledge.

Bocciarelli, L. L. (1994). Designing engineers. Cambridge, MA: MIT Press.

Bowden, G. (1995). Coming of age in STS: Some methodological musings. In S. Jasanoff, G.
E. Markle, J. C. Petersen & T. Pinch (Eds.), Handbook of science and technology
studies (pp. 64-79). London: Sage.

Brady, T., Tierney, M., & Williams, R. (1992). The commodification of industry applications
software. Industrial and Corporate Change 1 (3), 489-514.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering. IEEE
Computer, 20 (4), 10-19.

Castells, M. (1996-8). The information age: Economy, society and culture (Vols. 1-3).
Oxford: Blackwell.

http://www.energy.org.uk/Activtys/EnvBrief/AcidRain.pdf

www.manaraa.com

88

Ceruzzi, P. (1999). Inventing personal computing. In In D. MacKenzie & J. Wajcman (Eds.),
The social shaping of technology (2nd ed.) (pp. 64-86). Buckingham: Open University
Press.

Collins, H. M. (1984). Researching spoonbending: Concepts and practice of participatory
fieldwork. In C. Bell & H. Roberts (Eds.), Social researching: Politics, problem,
practice (pp. 54-69). London: Routledge & Kegan Paul.

Collins, H. M. (1995). Science studies and machine intelligence. In S. Jasanoff, G. E. Markle,
J. C. Petersen & T. Pinch (Eds.), Handbook of science and technology studies (pp.
286-301). London: Sage.

DiBona, C., Ockman, S., & Stone, M. (Eds.). (1999). Open sources: Voices from the open
source revolution. Sebastopol, CA: O'Reilly.

Dittrich, Y., Floyd, C, & Klischewski, R. (Eds.). (2002). Social thinking – software practice.
Cambridge, MA: MIT Press.

Edwards, P.N. (1995). From “impact” to social process: Computers in society and culture. In
S. Jasanoff, G. E. Markle, J. C Petersen & T. Pinch (Eds.), Handbook of science and
technology studies (pp. 257-285). London: Sage.

Edwards, P. N. (1996). The closed world: Computers and the politics of discourse in cold war
America. Cambridge, MA: MIT Press.

Einarsson, S., & Rausand, M. (1998). An approach to vulnerability analysis of complex
industrial systems. Risk Analysis, 18 (5), 535-546.

Flowers, S. (1996). Software failure - management failure: Amazing stories and cautionary
tales. Chichester: John Wiley & Sons.

Floyd, C. (1992). Software development as reality construction. In C. Floyd, H. Züllinghoven,
R. Budde & R. Keil-Slawik (Eds.), Software development and reality construction (pp.
86-100). Berlin: Springer-Verlag.

Floyd, C., Züllinghoven, H., Budde, R., & Keil-Slawik, R. (Eds.). (1992). Software
development and reality construction. Berlin: Springer-Verlag.

Gorman, M. E., & Carlson, W. B. (1990). Interpreting invention as a cognitive process: The
case of Alexander Graham Bell, Thomas Edison, and the telephone. Science,
Technology, & Human Values, 15 (2), 131-164.

Green, E., Owen, J., & Pain, D. (Eds.). (1993). Gendered by design? Information technology
and office systems. London: Taylor & Francis.

www.manaraa.com

 89

Hammersley, M., & Atkinson, P. (1995). Ethnography: Principles in practice (2nd ed.).
London: Routledge.

Hanks, P. (Ed.). (1986). Collins English Dictionary (2nd ed.). London: Collins.

Hommels, A. (2001). Unbuilding cities: Obduracy in urban sociotechnical change (Doctoral
dissertation). Maastricht: Universitaire Pers Maastricht.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development process.
Reading, MA: Addison-Wesley.

Jasanoff, S. (1994). Introduction: Learning from disaster. In S. Jasanoff (Ed.), Learning from
disaster: Risk management after Bhopal (pp. 1-21). Philadelphia: University of
Philadelphia Press.

Kleif, T., & Faulkner, W. (2003). “I’m no athlete [but] I can cake this thing dance!” – Men’s
pleasures in technology. Science, Technology, & Human Values, 28 (2), 296-325.

Klischewski, R., Floyd, C., & Dittrich, Y. (2002). Introduction. In Y. Dittrich, C. Floyd & R.
Klischewski (Eds.), Social thinking – software practice (pp. ix-xii). Cambridge, MA:
MIT Press.

Kobitzsch, W., Rombach, D., & Feldmann, R. L. (2001). Outsourcing in India. IEEE
Software, 18 (2), 78-86.

Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts.
Princeton, NJ: Princeton University Press. (Original work published 1979)

Leveson, N. G. (1995). Safeware: System safety and computers. Reading, MA: Addison-
Wesley.

Leveson, N. G., & Turner, C. S. (1993). An investigation of the Therac-25 accidents. IEEE
Computer 26 (7), 18-41.

Library of failed information systems projects (n. d.). University of Wolverhampton, School
of Computing and Information Technology. Retrieved May 7, 2003, from
http://www.scit.wlv.ac.uk/~cm1995/cbr/library.html

Low, J., & Woolgar, S. (1993). Managing the social-technical divide: Some aspects of the
discursive structure of information systems development. In P. Quintas (Ed.), Social
dimensions of systems engineering: People, processes, policies and software
development (pp. 34-58). London: Ellis Horwood.

MacKenzie, D. (1993). Negotiating arithmetic, constructing proof: The sociology of
mathematics and information technology. Social Studies of Science 23 (1), 37-65.

www.manaraa.com

90

Mackenzie, D., & Wajcman, J. (1995). The social shaping of technology (2nd ed.).
Buckingham: Open University Press.

Martiniussen, E. (2002, May 21). Blair will consider cleaning of Technetium-99. Bellona
Web. Retrieved September 19, 2003, from
http://www.bellona.no/en/energy/nuclear/sellafield/24281.html

Moody, G. (2002). Rebel code: Linux and the open source revolution. London: Penguin.

Murray, F., & Knights, D. (1990). Competition and control: The strategic use of IT in a life
insurance company. In K. Legge, C. W. Clegg & N. J. Kemp (Eds.), Case studies in
information technology. Oxford: Blackwell.

Naur, P. (1985). Programming as theory building. Microprocessing and Microprogramming,
15, 253-261.

Neumann, P.G. (1995). Computer-related risks. New York: ACM Press.

Newkirk, J., & Martin, R. C. (2001). Extreme Programming in practice. Reading, MA:
Addison-Wesley.

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & R. Stevens
(Eds.), Mental models (pp. 7-15). Hillsdale, NJ: Lawrence Erlbaum.

Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

Page, D., Williams, P., & Boyd, D. (1993, February). Report of the inquiry into the London
Ambulance Service, South West Thames Regional Health Authority. Electronic
version retrieved May 14, 2003, from
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf

Perrow, C. (1999). Normal accidents: Living with high-risk technologies (2nd ed.). New
York: Basic Books. (Original work published 1984)

Pressmann, R. S., & Ince, D. (2000). Software engineering: A practitioner’s approach.
(European adaptation, 5th ed.). London: McGraw-Hill.

Quintas, P. (Ed.). (1993). Social dimensions of systems engineering: People, processes,
policies and software development. London: Ellis Horwood.

Rasmussen, B., & Håpnes, T. (1991). Excluding women from the technologies of the future?
Futures, 23 (10), 1107-1119.

Raymond, E. S. (2001). The cathedral & the bazaar: Musings on Linux and open source by
an accidental revolutionary (Revised ed.). Sebastopol, CA: O’Reilly.

http://www.bellona.no/en/energy/nuclear/sellafield/24281.html
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf

www.manaraa.com

 91

Renn, O. (1992). Concepts of risk: A classification. In S. Krimsky & D. Golding (Eds.),
Social theories of risk (pp. 53-79). Westport, CT: Praeger.

Roberts, K. (1990). Some characteristics of one type of high reliability organization.
Organization Science, 1 (2), 160-176.

Rönkkö, K., & Lindeberg, O. (2000). ‘Bad practice’ or ‘bad methods’: Software engineering
and ethnographic perspectives on software development. Proceedings of the IRIS, 23.
Trollhättan: University of Trollhättan/Uddevalla.

Sagan, S. D. (1993). The limits of safety: organizations, accidents and nuclear weapons.
Princeton, NJ: Princeton University Press.

Seale, C. (1998). Qualitative interviewing. In C. Seale (Ed.), Researching society and culture
(pp. 202-216). London: Sage.

Snook, S. A. (2000). Friendly fire: The accidental shootdown of U.S. Black Hawks over
Northern Iraq. Princeton: Princeton University Press.

Stake, R. E. (1994). Case Studies. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of
qualitative research (pp. 236-247). London: Sage.

Tuomi, I. (2001). Internet, innovation, and open source: Actors in the network. First Monday,
6 (1). Retrieved from http://firstmonday.org/issues/issue6_1/tuomi/index.html

Undheim, T. A. (2002). Visionary managers and silent engineers. In T. A. Undheim, What the
Net can’t do: The everyday practice of Internet, globalization, and mobility (Doctoral
dissertation) (pp. 93-124). Trondheim: Department of Sociology and Political Science,
Norwegian University of Science and Technology, Faculty of Social Sciences and
Technology Management.

Van Loon, J. (2000). Virtual risks in an age of cybernetic reproduction. In B. Adam, U. Beck
& J. Van Loon (Eds.), The risk society and beyond: Critical issues for social theory
(pp. 165-182). London: Sage.

Van Loon, J. (2002). Risk and technological culture: Towards a sociology of virulence.
London: Routledge.

Vaughan, D. (1997). The Challenger launch decision: Risky technology, culture, and
deviance at NASA. Chicago: University of Chicago Press.

Wackers, G. (n. d.). Notions of vulnerability. Unpublished manuscript.

Warner, F. (1992). Introduction. In Risk: Analysis, perception and management. London: The
Royal Society.

http://firstmonday.org/issues/issue6_1/tuomi/index.html

www.manaraa.com

92

Webster, F. (2002). Theories of the information society (2nd ed.). London: Routledge

Williams, R., & Edge, D. (1996). The social shaping of technology. Research Policy, 25, 865-
899.

Women in computing: Attracting more women to studies in computer science and
communication technology at the Norwegian University of Science and Technology
(NTNU) (n.d.). Retrieved August 7, 2003 from the Norwegian University of Science
and Technology web site: http://datajenter.ntnu.no/2002_v2/english.html

Wyatt, S. (1998). Technology’s Arrow: Developing information networks for public
administration in Britain and the United States. Maastricht: Universitaire Pers
Maastricht.

http://datajenter.ntnu.no/2002_v2/english.html

	Synopsis
	Preface
	Table of Contents
	Vulnerable Software – Vulnerable Lives
	Introduction
	The Role of Social Factors in Software Vulnerability
	Studying Social Aspects of Software Development and Use
	Bridging Social Thinking and Software Practice
	Method
	Structure of the Thesis

	The Risky Information Society
	Introduction: The Risk Society
	Vulnerability of the Information Society
	Normal Accidents vs. High Reliability
	Practical Drift

	Software Development: Pleasure or Pain?
	Introduction
	Two Companies – Two Contexts
	Telenor Mobile
	FIRM
	Contexts for Software Development

	Practical Drift in Software Development Organizations
	Software Methods and Processes
	Pleasures in Technology
	Mental Models
	Production Pressures
	Fragmentation of Responsibility
	The Results of Practical Drift

	Conclusion: Living with Vulnerability
	Summary
	Implications
	Directions for Future Research
	Anticipating Vulnerability

	List of interviewees
	Telenor Mobile
	FIRM

	References

